@ LESSON 03
State Machine ¢
+ GameHUD R

LESSON GOALS

@ Goal Summary:
 Build the GameHUD

« Create Ul elements for Information, State, and Debug text
« Attach HUD to player camera (desktop & VR compatible)
« Implement the State Machine pattern in GameController

« Synchronize state changes across clients

« Display states on HUD

‘ Video Link *

https://www.youtube.com/watch?list=TLGGHZwJ0KbKhZIxMDAxMjAyNg&v=YuuTUq9v648
https://www.youtube.com/watch?v=YuuTUq9v648

)] Learning Objectives + Deliverables

Learning Objectives

. o
. Q
S 4 p—
. Q
. Q

@ VR

ﬁ@
od

(1)

SCRIPT
</>
=\

Create a Understand Create a clean Synchronize game
Implement the state with

State Machine UdonSynced
pattern

worldspace HUD tracking data for GameHUD
that follows the VR vs Desktop UdonSharp
player script

Deliverables

X
prex

v A working . : v -
GameHUD with 3 v A functional state v HUD updating Network

; machine when state synchronized
textfields changes states

B GENERAL DESCRIPTION OF THE LESSON

High-Level Description
& Goal: We are going to create a GameHUD where we will display during runtime information

that will help us to debug the game and later on. We will also implemented the skeleton of a
state machine that will define the different states that the game is going to be.

(D LEVEL 1: Advanced Challenge

In this lesson we will:
¢ Build a GameHUD Ul that stays in front of the player’s view with 3
textfiels (Information, State, Debuqg)

¢ Implement the state machine that defines core game flow
(NONE, ORGANIZATION, GAME, GAME_OVER, RELOAD)

¢ Use UdonSynced to synchronize state across all connected players.

¢ Define a method StateChanged() that is run when there is a change
in the game state.

¢ Use the GameHUD State textfield to inform about the current state to
verify it has changed.

¢ Test state transition to GAME when there are up to 4 VRChat
instances connected to the world.

DAl Lesson Prompt : State Machine

https://chatgpt.com/share/69440fc3-40d4-8011-b2b3-ea8e7bde768a

nE]
L

Exercise 1: Create the GameHUD Ul structure in the game scene.

¢ Actions: ‘

1) Create an empty GameObject in the scene named GameHUD
2) Add an image inside the previous GameObject

3) Change the RenderMode of the Canvas to WorldSpace

4) Adjust the canvas and image scale and position so it’s visible close to the center of
the game field.

* 5) Add 3 Textfields inside the Image and name them (Information, State, Debug)

6) Adjust their size, position and font size until all of them are visible

Hierarchy
P VRCDefaultWorldScene
£ VRCWorld
9 Main Camera
[0 Directional Light
|"|'1 Floor
|'|'I Ex f
) GameCenter
]
() GameController
|"|-'| GameHUD
[Canvas
|'.|.'| Image

Information

I"|"I BallController
L

State =

Debug

A=

& Exercise 2: Write the GameHUD UdonShorP scrlpt soit's linked to
the camera and positioned depending plattorm (Desktop, VR).

¢ Actions: ‘
1) Create a UdonSharp script named GameHUD inside the folder /Game/Scripts/View
2) Create serialized variable members for the 3 textfields:

3) Add the script as a component of the GameObject in the scene GameHUD and
initialize its variable members.

4) Implement the methods that will set the values for the textfields:
5) In the GameHUD script define 2 private members and initialize them in Start()

method
6) In the GameHUD script, for the Update() method implement so the position and
orientation of the GameHUD is facing the player. Search online or Ask Al for help.

7) Adjust the position of the GameHUD until you feel ok with it.

void Start() {
_localPlayer = Networking.LocalPlayer;
_isVR = _localPlayer.IsUserInVR();
}
void Update() {
if (_isVR) {

VRCPlayerApi.TrackingData head = Networking.LocalPlayer.GetTrackingData(VRCPlayerApi.TrackingDataType.Head);

Vector3 headPos = head.position;
Quaternion headRot = head.rotation;
transform.position headPos + headRot * new Vector3(o, 0, 2f);
transform.rotation headRot;
}
else {
transform.position = _localPlayer.GetPosition() + _localPlayer.GetRotation() * new Vector3(e, 1, 2f);

transform.rotation = _localPlayer.GetRotation();

e public void SetInformation(string text)
e public void SetState(string text)

e public void SetDebug(string text)

public class GameHUD : UdonSharpBehaviour
{
// OTHER CODE

[SerializeField] private TMP_Text information;
[SerializeField] private TMP_Text state;
[SerializeField] private TMP_Text debug;

public class GameHUD : UdonSharpBehaviour

{
// OTHER CODE

private VRCPlayerApi _localPlayer;
private bool _isVR;

A=

£ Exercise 3: Create the state machine in GameController. and

implement that OnPlayerJoined there is a transition to the state
ORGANIZATION

¢ Actions in GameController script: ‘

1) Create enum GameState with values(NONE, ORGANIZATION, GAME, GAME _OVER,
RELOAD)

2) Create the variables that will keep the state:

3) Create a method called StateChanged() that will evaluate the exact moment a
that we change the state. Implement a switch that will evaluate each state.

4) Create a serialized variable member to the GameHUD and initialize it:

‘ B) In the method StateChanged() use the gameHUD.SetState(string text) a

method to inform that we have changed of state.

7) On the OnPlayerJoined() method, for the local player, set the local state to
ORGANIZATION and call StateChanged(). When you play the scene the textfield
of the GameHUD should be displaying that information.

public class GameController : UdonSharpBehaviour

{
// OTHER CODE ...

[SerializeField]
private GameHUD gameHUD;

public override void OnPlayerJoined(VRCPlayerApi player)

{
Debug.Log("On Player Joined");

if (Networking.LocalPlayer = player)

{
player.SetWalkSpeed(8f);

player.SetRunSpeed(16f);
_currentState = GameState.ORGANIZATION,
StateChanged();

?rivate void StateChanged()
switch (_currentState) {
case GameState.ORGANIZATION:
break;
case GameState.GAME:
break;

case GameState.GAME_ OVER:
break;

case GameState.RELOAD:
break;

}

public enum GameState

{

NONE = 0,
ORGANIZATION = 1,
GAME = 2,
GAME_OVER = 3,
RELOAD = 4

public class GameController : UdonSharpBehaviour

{
// OTHER CODE

[UdonSynced, NonSerialized]
public int syncedState; // Keep the networked synchronized state

private GameState _currentState; // Keep the local state

?rivate void StateChanged()
switch (_currentState) {
case GameState.ORGANIZATION:
gameHUD.SetState("ORGANIZATION");
break;
case GameState.GAME:
gameHUD.SetState("GAME");
break;
case GameState.GAME_OVER:
gameHUD.SetState("GAME_OVER");
break;
case GameState.RELOAD:
gameHUD.SetState("RELOAD");
break;

nE]
L

Exell'::jise 4: Enter GAME state when 4 players have entered the
world.

¢ Actions in GameController script:

1) In GameController create a private member that will keep the count of the joined ‘
players

2) Increase that counter on method (OnPlayerJoined).

3) Create a method SetState(GameState newState) that will allow only the master client
to change the state. Remember you need to do a RequestSerialization() after you
change any network variable to transmit the changes to the rest of connected clients

4) In (OnPlayerJoined) method, do an action only for the master client so when the a

counter of players is over 2, change the state to GAME.

5) On the inherited method (OnDeserialization) override in order to detect when the
network state has changed in regards the local state to update the state and run
(StateChanged();) to run the changes linked to the state.

6) Test the system by setting the minimum number of players to transition to GAME
state to 4.

public void SetState(GameState newState)
{

if (Networking.IsMaster)

{
syncedState = (int)newState;

_currentState = (GameState)syncedState;
RequestSerialization();
StateChanged();

public override void OnDeserialization()

{
bool isThereChangeState = (_currentState = (GameState)syncedState);

_currentState = (GameState)syncedState;
if (isThereChangeState) StateChanged();

}

public override void OnPlayerJoined(VRCPlayerApi player)

{
// OTHER CODE ...

if (Networking.IsMaster)

{
if (_currentState = GameState.ORGANIZATION)

{

_totalPlayersInGame++;
if (_totalPlayersInGame = 2)

{
}

SetState(GameState.GAME);

A=

LESSON 08 COMPLETEL

You now have:

« A fully functional GameHUD
* « A synchronized state machine

» A scalable foundation for all future lessons

a Code Checkpoint: State Machine

https://www.dropbox.com/scl/fi/woxrj5ge9be43276r4wd2/MultiBallRugby_LESSON_03_GameControllerStates_v01_BUTTON.zip?rlkey=6fbx4qy887vir68mq9um5ymkx&st=bcde24u0&dl=0

Lo
@ Self-Evaluation

It’s time to put what we’ve learned into practice! Here are 4 questions
to check by yourself what you have learnt in this lesson.

What is the main purpose of using a state machine in the game?

To control player To organize and control
movement and the game flow through
animations well-defined states

To replace networking
logic

Why is the GameHUD implemented as a world-space Ul that follows the
player?

To ensure the Ul works
consistently in both
Desktop and VR mode

Because screen-space Ul To improve game
does not work in Unity performance

What is the role of an UdonSynced variable in the state machine?

To store values . : To synchronize important
To make variables editable
permanently on the local . . values, such as the game
. in the Unity Inspector
machine state, across all players

When should the StateChanged() method be called?

Whenever the game state
changes

Every frame inside

Only when the game starts Update()

Help us to improve

Did you understand how the Do you feel confident with the
GameHUD follows the player? concept of a state machine?
Write your answer here. Write your answer here.

o

What extra examples could make state machines clearer?

Write your answer here.

Was the explanation of
UdonSynced variables clear?

Write your answer here.

