
Start

🎓 LESSON 03

State Machine 

+ GameHUD



🎯 Goal Summary:

LESSON GOALS

Next

    • Build the GameHUD

    • Create UI elements for Information, State, and Debug text

    • A�ach HUD to player camera (desktop & VR compatible)

    • Implement the State Machine pa�ern in GameController

LESSON 03 STATE MACHINELESSON 03 STATE MACHINE

    • Synchronize state changes across clients

    • Display states on HUD

Video Link

https://www.youtube.com/watch?list=TLGGHZwJ0KbKhZIxMDAxMjAyNg&v=YuuTUq9v648
https://www.youtube.com/watch?v=YuuTUq9v648


Learning Objectives + Deliverables

Learning Objectives

Deliverables

Understand 
tracking data for 

VR vs Desktop

Create a clean 
GameHUD 

UdonSharp 
script

Implement the 
State Machine 

pa�ern

Synchronize game 
state with 

UdonSynced

Create a 
worldspace HUD 
that follows the 

player

✅ A working 
GameHUD with 3 

text�elds

✅ A functional state 
machine

✅ HUD updating 
when state 

changes

✅ Network-
synchronized 

states



GENERAL DESCRIPTION OF THE LESSON

In this lesson we will:
🔹 Build a GameHUD UI that stays in front of the player's view with 3 
text�els (Information, State, Debug)

🔹 Implement the state machine that de�nes core game �ow 
(NONE, ORGANIZATION, GAME, GAME_OVER, RELOAD)

🔹 Use UdonSynced to synchronize state across all connected players.

🔹 De�ne a method StateChanged() that is run when there is a change 
in the game state.

🔹 Use the GameHUD State text�eld to inform about the current state to 
verify it has changed.

Next

🧠AI Lesson Prompt : State Machine

🔹 Test state transition to GAME when there are up to 4 VRChat 
instances connected to the world.

🔴 LEVEL 1: Advanced Challenge

High-Level Description

🎯 Goal: We are going to create a GameHUD where we will display during runtime information 
that will help us to debug the game and later on. We will also implemented the skeleton of a 
state machine that will de�ne the di�erent states that the game is going to be.

https://chatgpt.com/share/69440fc3-40d4-8011-b2b3-ea8e7bde768a


Exercise 1: Create the GameHUD UI structure in the game scene.

🔹 Actions:

1) Create an empty GameObject in the scene named GameHUD

2) Add an image inside the previous GameObject

3) Change the RenderMode of the Canvas to WorldSpace

4) Adjust the canvas and image scale and position so it’s visible close to the center of 
the game �eld.

GameHUD

5) Add 3 Text�elds inside the Image and name them (Information, State, Debug)

6) Adjust their size, position and font size until all of them are visible





Exercise 2: Write the GameHUD UdonSharp script so it's linked to 
the camera and positioned depending platform (Desktop, VR).

🔹 Actions:

1) Create a UdonSharp script named GameHUD inside the folder /Game/Scripts/View

2) Create serialized variable members for the 3 text�elds:

3) Add the script as a component of the GameObject in the scene GameHUD and 
initialize its variable members.

4) Implement the methods that will set the values for the text�elds:

Code

5) In the GameHUD script de�ne 2 private members and initialize them in Start() 
method:

6) In the GameHUD script, for the Update() method implement so the position and 
orientation of the GameHUD is facing the player. Search online or Ask AI for help.

7) Adjust the position of the GameHUD until you feel ok with it.



 void Start() {

        _localPlayer = Networking.LocalPlayer;

        _isVR = _localPlayer.IsUserInVR();

    }

void Update() {

   if (_isVR) {

      VRCPlayerApi.TrackingData head = Networking.LocalPlayer.GetTrackingData(VRCPlayerApi.TrackingDataType.Head);

 

      Vector3 headPos = head.position;

      Quaternion headRot = head.rotation;

      transform.position = headPos + headRot * new Vector3(0, 0, 2f);

      transform.rotation = headRot;

    }

     else {

      transform.position = _localPlayer.GetPosition() + _localPlayer.GetRotation() * new Vector3(0, 1, 2f);

      transform.rotation = _localPlayer.GetRotation();

   }

}



public void SetInformation(string text)
 

public void SetState(string text)
 

public void SetDebug(string text)



public class GameHUD : UdonSharpBehaviour
{   
   �� OTHER CODE ���
 

   [SerializeField] private TMP_Text information;  
   [SerializeField] private TMP_Text state;    
   [SerializeField] private TMP_Text debug;



public class GameHUD : UdonSharpBehaviour
{
   �� OTHER CODE ���
 
   private VRCPlayerApi _localPlayer; 
   private bool _isVR;



Exercise 3: Create the state machine in GameController. and 
implement that OnPlayerJoined there is a transition to the state 
ORGANIZATION

🔹 Actions in GameController script:

2) Create the variables that will keep the state:

4) Create a serialized variable member to the GameHUD and initialize it:

3) Create a method called StateChanged() that will evaluate the exact moment 
that we change the state. Implement a switch that will evaluate each state.

6) In the method StateChanged() use the gameHUD.SetState(string text) 
method to inform that we have changed of state.

7) On the OnPlayerJoined() method, for the local player, set the local state to 
ORGANIZATION and call StateChanged(). When you play the scene the text�eld 
of the GameHUD should be displaying that information.

1) Create enum GameState with values(NONE, ORGANIZATION, GAME, GAME_OVER, 
RELOAD)



public class GameController : UdonSharpBehaviour
{
   �� OTHER CODE���
 
   [SerializeField]
   private GameHUD gameHUD;



public override void OnPlayerJoined(VRCPlayerApi player)
{
        Debug.Log("On Player Joined");
        if (Networking.LocalPlayer �� player)
        {
            player.SetWalkSpeed(8f);
            player.SetRunSpeed(16f);
            _currentState = GameState.ORGANIZATION;
            StateChanged();
        }
}
 



private void StateChanged() 
{ 
 switch (_currentState) { 

case GameState.ORGANIZATION� 
break; 

case GameState.GAME� 
break; 

case GameState.GAME_OVER� 
break; 

case GameState.RELOAD� 
break; 

} 
}



public enum GameState
{
    NONE = 0,
    ORGANIZATION = 1,
    GAME = 2,
    GAME_OVER = 3,
    RELOAD = 4
}
 



public class GameController : UdonSharpBehaviour
{
   �� OTHER CODE ���
 
   [UdonSynced, NonSerialized] 
   public int syncedState; �� Keep the networked synchronized state 
 
   private GameState _currentState; �� Keep the local state



private void StateChanged() 
{ 
 switch (_currentState) { 

case GameState.ORGANIZATION� 
gameHUD.SetState("ORGANIZATION"); 
break; 

case GameState.GAME� 
gameHUD.SetState("GAME"); 
break; 

case GameState.GAME_OVER� 
gameHUD.SetState("GAME_OVER"); 
break; 

case GameState.RELOAD� 
gameHUD.SetState("RELOAD"); 
break; 

} 
}



Exercise 4: Enter GAME state when 4 players have entered the 
world.

🔹 Actions in GameController script:

2) Increase that counter on method (OnPlayerJoined).

3) Create a method SetState(GameState newState) that will allow only the master client 
to change the state. Remember you need to do a RequestSerialization() after you 
change any network variable to transmit the changes to the rest of connected clients

5) On the inherited method (OnDeserialization) override in order to detect when the 
network state has changed in regards the local state to update the state and run 
(StateChanged();) to run the changes linked to the state.

6) Test the system by se�ing the minimum number of players to transition to GAME 
state to 4.

1) In GameController create a private member that will keep the count of the joined 
players

4) In (OnPlayerJoined) method, do an action only for the master client so when the 
counter of players is over 2, change the state to GAME. 



public void SetState(GameState newState)
{
   if (Networking.IsMaster)
   {
      syncedState = (int)newState;
      _currentState = (GameState)syncedState;
      RequestSerialization();
      StateChanged();
   }
}



public override void OnDeserialization()
{
   bool isThereChangeState = (_currentState �� (GameState)syncedState);
   _currentState = (GameState)syncedState;
   if (isThereChangeState) StateChanged();
}



public override void OnPlayerJoined(VRCPlayerApi player)
{

�� OTHER CODE���
 

if (Networking.IsMaster)
{
    if (_currentState �� GameState.ORGANIZATION)
    {

           _totalPlayersInGame��;
           if (_totalPlayersInGame �� 2)
           {
              SetState(GameState.GAME);
           }
        }
    }
}



LESSON 03 COMPLETED

You now have:
 
    • A fully functional GameHUD
 
    • A synchronized state machine
 
    • A scalable foundation for all future lessons

Code Checkpoint: State Machine

https://www.dropbox.com/scl/fi/woxrj5ge9be43276r4wd2/MultiBallRugby_LESSON_03_GameControllerStates_v01_BUTTON.zip?rlkey=6fbx4qy887vir68mq9um5ymkx&st=bcde24u0&dl=0


Question 1

It's time to put what we've learned into practice! Here are 4 questions 
to check by yourself what you have learnt in this lesson.

Self-Evaluation

Question 2

Question 3

Question 4



What is the main purpose of using a state machine in the game?

To control player
movement and

animations

To organize and control
the game flow through

well-defined states

To replace networking
logic



Why is the GameHUD implemented as a world-space UI that follows the
player?

Because screen-space UI
does not work in Unity

To improve game
performance

To ensure the UI works
consistently in both

Desktop and VR mode



What is the role of an UdonSynced variable in the state machine?

To store values
permanently on the local

machine

To make variables editable
in the Unity Inspector

To synchronize important
values, such as the game
state, across all players



When should the StateChanged() method be called?

Whenever the game state
changes

Only when the game starts
Every frame inside

Update()



Help us to improve

Write your answer here.

What extra examples could make state machines clearer?

Send

Write your answer here.

Did you understand how the

GameHUD follows the player?

Send

Write your answer here.

Do you feel con�dent with the

concept of a state machine?

Send

Write your answer here.

Was the explanation of

UdonSynced variables clear?

Send


