@ LESSON 04

Team
Formation




LESSON GOALS

@ Goal Summary:
« Implement team assignment logic
« Store players in arrays: Red, Blue

« Display team info in HUD Debug
- Create identification balls (5 Red, 5 Blue)

« Assign a colored ball above each player

« Teleport the players to their initial match positions

« Ensure Start Game only works if teams are balanced

‘ Video Link



https://www.youtube.com/watch?list=TLGG9YMp_mITvsAxMDAxMjAyNg&v=ZmJkXlwl3f4
https://www.youtube.com/watch?v=ZmJkXlwl3f4

A

Learning Objectives

Ll

[

Create team arrays
and assign arriving
players

Deliverables

v/ Balanced Red &
Blue teams

&
QA&

Determine team
and index of
each player

. g
. Q
. Q

. Q

2

v Team
assignments visible
in the HUD

SCRIPT
</>
()

Debug team
assignments
using GameHUD

958,

q

v ldentification
balls floating above
players

Create
identification ball
prefabs for each

team

v Correct ball
ownership &
despawn logic

Learning Objectives + Deliverables

0
START

Enable the Start
Game button only
when teams are
balanced

START

v Start button
becomes available
only when teams are
even



A

GENERAL DESCRIPTION OF THE LESSON

High-Level Description

& Goal: Assign the incoming players to the 2 different teams (RED,
BLUE) and use a colored ball over their avatar’s head to identify them.
@ LEVEL 1: Advanced Challenge

In this lesson we will:

¢ Two arrays (teamBed[], teamBlue[]) that store player IDs

¢ Logic in GameController to assign players alternately by order of arrival
¢ Methods to get a player’s team and team index

¢ Use GameHUD Debug output to show information about the team
assignation

¢ Create ten “identification ball” prefabs (5 red, 5 blue)

¢ A TeamAssignation script attach to the previous “identification
ball” that follows the owner player.

¢ |dentification ball assignment is done during ORGANIZATION state
¢ Create areset function to clear the ball assignment.

¢ Button logic that performs the change to GAME state only if
both teams have the same number of players.

JAl Lesson Prompt: Team Formation



https://chatgpt.com/share/69445096-6d78-8011-9942-697cc3ae593e

A=

Exercise 1: Create 2 Udon networked int arrays in GameController to keep
L e playerld of the players assigned to each team. The assignation is being
done by order of arrival, so the players that are odd enter to team Red and
the players who are even enter to team Blue. ‘

¢ Actions (Part 1/2): ‘

1) Define a constant (MaxPlayersPerTeam = 5). Define 2 network integer
arrays for each team (Red, Blue) where we will keep the player’s id, then ‘
allocate memory and initialize them to -1 at the (Start(])) method.

2) With the previously done player counter done in the last lesson, create a function

(bool AssignPlayerToTeam(VRCPlayerApi player)) which decides where to store the a
playerld of each player who has joined the game. (Blue = Red — Blue — Red —...). It
should return true(Red), false(Blue).

3) Find out the right place to call the method (AssignPlayerToTeam) a

4) Define this enum type named Team:

5) Create a function (Team GetPlayerTeam(int targetld)) to retrieve the team which a

a int playerld belongs to.



public class GameController : UdonSharpBehaviour

{

public const int MaxPlayersPerTeam = 5;

[UdonSynced]
private int[] _teamBluePlayers = null;
[UdonSynced]
private int[] _teamRedPlayers = null;

void Start()

if (_teamBluePlayers = null) _teamBluePlayers = new int[MaxPlayersPerTeam];

if (_teamRedPlayers = null) _teamRedPlayers = new int[MaxPlayersPerTeam];
ResetPlayerIndexes();

}

private void ResetPlayerIndexes()
{
for (int 1 = 0; i < MaxPlayersPerTeam; i++)
{
_teamBluePlayers[i] = -1;
_teamRedPlayers[i] = -1;
}
}




public Team GetPlayerTeam(int targetId)

{
if ((_teamBluePlayers = null) || (_teamRedPlayers = null)) return Team.TEAM_NONE;

for (int i = 0; i < MaxPlayersPerTeam; i++)

{
if (_teamBluePlayers[i] = targetId)

{
}
}

return Team.TEAM_RED;

return Team.TEAM_BLUE;




public enum Team
{
TEAM_NONE
TEAM_BLUE
TEAM_RED = 2
}

0,
1,




private bool AssignPlayerToTeam(VRCPlayerApi player)
{
int playerId = player.playerld;
bool assignToRed = (_totalPlayersInGame % 2 = 0);
int[] team = assignToRed ? _teamRedPlayers : _teamBluePlayers;
for (int 1 0; i < MaxPlayersPerTeam; i++)
{
if (team[i] = -1)

team[i] = playerId;
return assignToRed;

}
}

return assignToRed;




public override void OnPlayerJoined(VRCPlayerApi player)
{
Debug.Log("On Player Joined");
if (Networking.LocalPlayer = player)
{
player.SetWalkSpeed(6f);
player.SetRunSpeed(16f);

_currentState = GameState.ORGANIZATION;
StateChanged();
if (Networking.IsMaster)

{

AssignPlayerToTeam(player);
_totalPlayersInGame++;

}
}




A=

Exercise 1: Create 2 Udon networked int arrays in GameController to keep

L e playerld of the players assigned to each team. The assignation is being
done by order of arrival, so the players that are odd enter to team Red and

the players who are even enter to team Blue. ‘
¢ Actions (Part 2/2): ‘
6) Create a function (int GetPlayerindex(int targetld)) that will get the
position in the team’s array of an int playerld.

7) Create a method (void ShowDebuginfo()) that will show through the
gameHUD.SetDebug() the next information:

* Player Team
* Player Index
* The 2 arrays of the team assignation

8) Show that information every time a new player connects. a
9) Test multiple VRChat instance to verify the debug information is displayed

a Code Checkpoint: Team Assignation


https://www.dropbox.com/scl/fi/2fa8wyrnmk3wfn9ip1d6v/MultiBallRugby_LESSON_04_TeamAssignment_v00_BASE.zip?rlkey=nobyqx4htko1fug2f56xeas0x&st=jbbv1vkd&dl=0

private void ShowDebugInfo()
{

string teamA
string teamB ;
for (int i = 0; i < MaxPlayersPerTeam; i++)
{

teamA += _teamBluePlayers[i] + ",";

teamB += _teamRedPlayers[i] + ",";

}

int indexPlayer

?
nn o,

GetPlayerIndex(Networking.LocalPlayer.playerld);
Team teamPlayer = GetPlayerTeam(Networking.LocalPlayer.playerId);
string teamName "BLUE";
if (teamPlayer = Team.TEAM_RED)
{

teamName = "RED";

}
gameHUD.SetDebug("P["+ indexPlayer +"]("+ teamName +")::A-Blue("+ teamA +")::A-Red("+ teamB +")");




public int GetPlayerIndex(int targetId)

{
if ((_teamBluePlayers = null) || (_teamRedPlayers = null)) return -1;
for (int i = 0; i < MaxPlayersPerTeam; i++)

{
if (_teamBluePlayers[i] = targetId)

{

I
3
for (int 1 = 0; i < MaxPlayersPerTeam; i++)
{
if (_teamRedPlayers[i] = targetId)

{

}
}

return -1;

return 1i;

return 1;




public override void OnDeserialization()

{
// OTHER CODE ...

ShowDebugInfo();
}

private void StateChanged()

{
ShowDebugInfo();

// OTHER CODE ...
}

public override void OnPlayerJoined( ...

{
// OTHER CODE ...

AssignPlayerToTeam(player);
RequestSerialization();

// OTHER CODE ...




A=

¥ Exercise 2: In order to identify to which team the players belong
to we are going to place a colored ball over their heads (Blue and
Red). We will handle the ball with the script TeamAssignation.

¢ Actions (Part 1/3):

1) Create a prefab for the ball Blue & Red. Then create a container in the scene with 5 ==

[ }

balls for each color. Place the balls far away the game field so they aren’t visible. ¥

®
*

2) Create the Udon script (TeamAssignation) in the folder /[Game/Scrips/View with
the following variable members:

3) Next you need to create the next methods:
public bool IsTeamBed { get; }: // A getter for the private value

public void AssignOwner(int playerld) // Assignation of ball to a playerld, propagate

OnDeserialization() // Process RequestSerialitzation() call: Initialize _targetPlayer

void Update(] // If there is a player assigned to the ball update the position, if not
place it far away

public void ClearOwner() // Clearing the ownership, propagate a


https://www.dropbox.com/scl/fi/wlfvb76ewrf4v11rhddvj/Images.zip?rlkey=f1ncatd3taznymavfzmryozyi&e=1&st=7xoriibk&dl=0

public class TeamAssignation : UdonSharpBehaviour {

private const float scale = 0.5f;
private const float offset = 2.5f; // Offset y over player’s head

[SerializeField] private bool isTeamRed = false; // Team Red or Blue
[UdonSynced] public int ownerPlayerlId; // playerId of the owner

private VRCPlayerApi _targetPlayer; // player owner reference




void Update()

if (ownerPlayerId < 0)

{
transform.position = new Vector3(1000, 1000, 1000);

return;

I
if (_targetPlayer = null)

_targetPlayer = VRCPlayerApi.GetPlayerById(ownerPlayerlId);
if (_targetPlayer = null) return;

Vector3 playerPos = _targetPlayer.GetPosition();
Vector3 pos = playerPos + new Vector3(0, offset, 0);
transform.position = pos;




public void AssignOwner(int playerlId)
{

ownerPlayerId = playerld;

_targetPlayer null;
RequestSerialization();




public bool IsTeamRed
{

get { return isTeamRed; }




public override void OnDeserialization()

{
if (ownerPlayerId > 0)

_targetPlayer = VRCPlayerApi.GetPlayerById(ownerPlayerId);
else
_targetPlayer = null;




public void ClearOwner()
{
ownerPlayerlId 0;
_targetPlayer null;
transform.position = new Vector3(1000, 1000, 1000);
RequestSerialization();




A=

¥ Exercise 2: In order to identify to which team the players belong
to we are going to place a colored ball over their heads (Blue and

Red). We will handle the ball with the script TeamAssignation.

¢ Actions (Part 2/3):

4) Add the script to the 2 prefabs of the previously created balls and initialize the
right value (bool isTeamBlue) to each prefab

5) In (GameController) script, create the variable member and initialize it with the
team identification balls of the scene:
B) Still in (GameController) create the methods:

SpawnldentificationBall(VRCPlayerApi player, bool isTeamRed): // This method
will performed by the master and it will assign a ball of the array to the joined

player. Find out where to call it.
DespawnAllldentificationBalls(): // Method that will despawn all the balls

®
*

DespawnldentificationBall(VRCPlayerApi player): // Method that will despawn the
ball for a particular player.

OnPlayerLeft(VRCPlayerApi player): // Despawn the ball for the player who left.



= Hierarchy

+ -

P VRCDefaultWorldScene*

R VRCWorld

EQ Main Camera
f Directional Light
£ Floor

f EventSystem

Walls

) TeamFormation
i@ TeamBlue
i@ TeamBlue (1)
i@ TeamBlue (2)
i@ TeamBlue (3)
i@ TeamEBlue (4)
i@ TeamRed

@ TeamRed (1)
i@ TeamRed (2)
i@ TeamRed (3)
i@ TeamRed (4)
fp) ButtonStartGame
£ Respawn
fl GameHUD

# Se
=il

ene

santer »

s Game

Plocal =

£ Project Settings

A

] ~

D -

O Inspector
W,
-
Tag Untagged
Multiple
Overrides

g Transform

B  MeshFilter

@.q;q. v Mesh Renderer

-

(10)

Layer Default

Select

ﬂ + Team Assignation (Script)

Synchronization Metl Continuous

Utilities

Owner Player Id

Add Component




public class GameController: UdonSharpBehaviour {

// OTHER CODE ...

[SerializeField]
private GameObject[] teamAssignation; // All the references to the balls




public override void OnPlayerLeft(VRCPlayerApi player)
{

}

DespawnIdentificationBall(player);




private void DespawnAllIdentificationBalls()
{

foreach (GameObject identification in teamAssignation)

{
TeamAssignation follower = identification.GetComponent<TeamAssignation>();
follower.ClearOwner();

}
}




public void AssignOwner(int playerlId)
{

ownerPlayerId = playerld;

_targetPlayer null;
RequestSerialization();




private void DespawnIdentificationBall(VRCPlayerApi player)

{
%f (player s null)

foreach (GameObject identification in teamAssignation)
{
TeamAssignation follower = identification.GetComponent<TeamAssignation>();
if (follower.ownerPlayerId = player.playerId)
{
follower.ClearOwner();
break;
l
}
}




private void SpawnIdentificationBall(VRCPlayerApi player, bool isTeamRed)
{

foreach (GameObject identification in teamAssignation)

{

TeamAssignation follower = identification.GetComponent<TeamAssignation>();
if ((follower.ownerPlayerId = 0) & (follower.IsTeamRed = isTeamRed))
{

follower.AssignOwner(player.playerId);
break;

}
}
}

public override void OnPlayerJoined(VRCPlayerApi player)
{
// OTHER CODE ...
if (Networking.IsMaster)
{
bool isTeamRed = AssignPlayerToTeam(player);
SpawnIdentificationBall(player, isTeamRed);
_totalPlayersInGame++;
if (_totalPlayersInGame = 4)
{
SetState(GameState.GAME);




A=

¥ Exercise 2: In order to identify to which team the players belon
to we are going to place a colored ball over their heads (Blue and
Red). We will handle the ball with the script TeamAssignation. ‘

4

¢ Actions (Part 3/3):

7) Test in the Unity Editor and verify that over your head is the right colored ball

8) Test with multiple instances if the player team assignation is properly done and
each player has the right colored ball.

a Code Checkpoint: Colored Team Balls


https://www.dropbox.com/scl/fi/dqdrfgp94r8gn846ld49i/MultiBallRugby_LESSON_04_TeamAssignment_v01_BALLS.zip?rlkey=a2twvzm40mfliinv7c3cpzi5w&st=8qi85hp1&dl=0

public override void OnPlayerLeft(VRCPlayerApi player)
{

}

DespawnIdentificationBall(player);




private void DespawnIdentificationBall(VRCPlayerApi player)

{
%f (player s null)

foreach (GameObject identification in teamAssignation)
{
TeamAssignation follower = identification.GetComponent<TeamAssignation>();
if (follower.ownerPlayerId = player.playerId)
{
follower.ClearOwner();
break;
l
}
}




public void AssignOwner(int playerlId)
{

ownerPlayerId = playerld;

_targetPlayer null;
RequestSerialization();




private void SpawnIdentificationBall(VRCPlayerApi player, bool isTeamRed)
{

foreach (GameObject identification in teamAssignation)

{

TeamAssignation follower = identification.GetComponent<TeamAssignation>();
if ((follower.ownerPlayerId = 0) & (follower.IsTeamRed = isTeamRed))
{

follower.AssignOwner(player.playerId);
break;

}
}
}

public override void OnPlayerJoined(VRCPlayerApi player)
{
// OTHER CODE ...
if (Networking.IsMaster)
{
bool isTeamRed = AssignPlayerToTeam(player);
SpawnIdentificationBall(player, isTeamRed);
_totalPlayersInGame++;
if (_totalPlayersInGame = 4)
{
SetState(GameState.GAME);




private void DespawnAllIdentificationBalls()
{

foreach (GameObject identification in teamAssignation)

{
TeamAssignation follower = identification.GetComponent<TeamAssignation>();
follower.ClearOwner();

}
}




A=

o Exercise 3: Implement a logic to start the game when there are the same
number of players for each team. Create an interactable button with a
textheld that displays a text depending if the game is ready or not.

¢ Actions (Part 1/3):

1 In the scene create a GameObject named ButtonStartGame that will contain a
canvas with a text inside.

2) Create the Udon script (ButtonStartGame) that will contain the logic of the
button. That will have the next variable members:

3) Add the script to the created GameObject in the scene and initialize its members
4) In (ButtonStartGame) implement the following methods:

void EnableReady() // Enable the button to be able to start the game

void DisableReady() // Disables the button forbidding the game start

public void NetworkEnable(bool isReady) // Method that will call
SendCustomNetworkEvent to enable or disable the button for all the connected
players.

public override void Interact() // Inherited method that enables the interaction.
Override it and just display a Debug.Log(“PRESSED START”) when enabled.




public void DisableReady()
{

_isEnabled = false;
textMessage.text = "NEED 1 MORE PLAYER...";

}




public void NetworkEnable(bool isReady)

{
%f (isReady)

SendCustomNetworkEvent(VRC.Udon.Common.Interfaces.NetworkEventTarget.All, nameof(EnableReady));
}

else

{
SendCustomNetworkEvent(VRC.Udon.Common.Interfaces.NetworkEventTarget.All, nameof(DisableReady));

}
}




public override void Interact()

{
if (gameController == null)
{

if (_isEnabled)
{

Debug.Log( "PRESSED START");



public class ButtonStartGame : UdonSharpBehaviour

{

[SerializeField]
private GameController gameController; // Reference to the GameController

[SerializeField]
private TextMeshProUGUI textMessage; // Reference to the textfield

private bool _isEnabled = false; // Enable/Disable interaction




= Hierarchy & i # Scene o Gam X Project Settings

+> o l [F]center v [PlLocal » - fth] =
' VRCDefaultWorldScene :
) VRCWarld

Ff Main Camera W

) Directional Light -

€9 Floor s
£ EventSystem —
ff GameCenter

W

) GameController

0 Walls
& TeamFormation
0] ButtonStartGame
P Canvas
) Respawn
7 GameHUD
£ BallContreller




public void EnableReady()
{

_isEnabled = true;
textMessage.text = "START GAME";




A=

o Exercise 3: Implement a logic to start the game when there are the same
number of players for each team. Create an interactable button with a
textheld that displays a text depending if the game is ready or not.

¢ Actions (Part 2/3):

5) In the script (GameController), define a new member variable and initialize it: ‘

6) Still in (GameController) implement the method (public void StartGameRequest()).

This method will be called by the (ButtonStartGame) and it will perform a a
(SendCustomNetworkEvent) that will ask the master client to start the game.

7) Back in (ButtonStartGame) now call the (StartGameRequest) when running (void a
Interact()) method.

8) Back to (GameController) we are going to remove the code that considered the

total number of players to change to the state GAME and now we are going to use
the new system. Remember, the button should show that is ready to start the game
only when there are the same number of players for each team.

9) Test it with multiple VRChat instances.
10) In order to be able to run the game in the same Unity editor we are going to a

type this code in (ButtonStartGame)



public void NetworkEnable(bool isReady)

{
#if UNITY_EDITOR
SendCustomNetworkEvent(VRC.Udon.Common.Interfaces.NetworkEventTarget.All, nameof(EnableReady));

#else
if (isReady)
{

SendCustomNetworkEvent(VRC.Udon.Common.Interfaces.NetworkEventTarget.All, nameof(EnableReady));
}

else

{
SendCustomNetworkEvent(VRC.Udon.Common.Interfaces.NetworkEventTarget.All, nameof(DisableReady));

}
#tendif

}




public class GameController : UdonSharpBehaviour

{
// OTHER CODE ...

public void StartGameRequest()

{
SendCustomNetworkEvent(VRC.Udon.Common.Interfaces.NetworkEventTarget.All, nameof(RequestMasterStartGame));
}

public void RequestMasterStartGame()
{
if (Networking.IsMaster)

{
}

SetState(GameState.GAME);
}




public override void OnPlayerJoined(VRCPlayerApi player)

{
// OTHER CODE

if (Networking.IsMaster)
{

bool isTeamRed = AssignPlayerToTeam(player);
SpawnIdentificationBall(player, isTeamRed);

_totalPlayersInGame++;
buttonStartGame.NetworkEnable(_totalPlayersInGame % 2




public override void Interact()

{

%f (gameController # null)

if (_isEnabled)
{

}

gameController.StartGameRequest();




public class GameController : UdonSharpBehaviour

{
// OTHER CODE

[SerializeField] private ButtonStartGame buttonStartGame;




A=

o Exercise 3: Implement a logic to start the game when there are the same

number of players for each team. Create an interactable button with a
textheld that displays a text depending if the game is ready or not.

¢ Actions (Part 3/3): ‘

10) In the script (GameController), define a new member variable and initialize it:

1) Back in the script (ButtonStartGame) we are going to implement these methods:
void ShowStart() // Will make visible the buttonStartGame

void HideStart(] // Will hide the buttonStartGame

12) Back to (GameController) script , we are going to hide the button when we enter
the GAME state.

13) Now you should be able to change to GAME state in Unity Editor and the
buttonStartGame should disappear.

14) Do tests with multiple VRChat Instances

a Code Checkpoint: Match Players



https://www.dropbox.com/scl/fi/0geokztttxxrgozr5k1cy/MultiBallRugby_LESSON_04_TeamAssignment_v02_MATCH_PLAYERS.zip?rlkey=xoskvvyn1oj3e5bi51lvma6h1&st=88eoc3jj&dl=0

public void HideStart()
{

}

this.gameObject.SetActive(false);




public class GameController : UdonSharpBehaviour

{
// OTHER CODE

[SerializeField] private ButtonStartGame buttonStartGame;




public void ShowStart()
{

}

this.gameObject.SetActive(true);




private void StateChanged()
{

switch (_currentState)

{
// OTHER CODE

case GameState.GAME:
gameHUD.SetState("GAME");
buttonStartGame.HideStart();
break;

// OTHER CODE




Exercise 4: When the %ome changes to the state GAME we should reposition

the players in a predefined positions.

¢ Actions:

1) Create 5 gameObjects for each team in both sides of the field where the players
will respawn. Disable the MeshRenderer component to make them invisible.

2) Create in (GameController) the members:

=

3) Create an non-visible gameObject in the center of the game field because we will need to

reorient the players towards it when they respawn.

4) Still in (GameController), create the member and initialize it with the previous GameObject:

5) When changing the state to GAME we are going to teleport each local player to
one of the spawning positions.

° Tip 1: Use (GetPlayerTeam) to get player’s team
o Tip 2: Use (GetPlayerindex) to get player’s index in array
o Tip 3: Only the same local player can teleport himself Networking.LocalPlayer

B) Test in Unity Editor and test with multiple VRChat Windows instances.
a Code Checkpoint: Respawn for match

3


https://www.dropbox.com/scl/fi/of9ihjs18zr8cicbhkg9i/MultiBallRugby_LESSON_04_TeamAssignment_v03_RESPAWN.zip?rlkey=hg05vsydohijac4zyoungi00i&st=s39mzudc&dl=0

public class GameController : UdonSharpBehaviour

{
// OTHER CODE

[SerializeField] private GameObject centerField;




public override void Interact()

{
if (gameController == null)
{

if (_isEnabled)
{

Debug.Log( "PRESSED START");



public class GameController : UdonSharpBehaviour
{
// OTHER CODE

[SerializeField]

private Transform[] spawnPointsTeamRed;

[SerializeField]
private Transform[] spawnPointsTeamBlue;




private void StateChanged()
{

switch (_currentState)

{
// OTHER CODE

case GameState.GAME:
gameHUD.SetState("GAME");
buttonStartGame.HideStart();

// RESPAWN PLAYERS IN POSITIONS
Team teamPlayer = GetPlayerTeam(Networking.LocalPlayer.playerId);
int indexRespawn = 0;
switch (teamPlayer)
{
case Team.TEAM_BLUE:
indexRespawn = GetPlayerIndex(Networking.LocalPlayer.playerId);
Quaternion orientationA = Quaternion.LookRotation((centerField.transform.position -
spawnPointsTeamBlue[indexRespawn].position).normalized, Vector3.up);
Networking.LocalPlayer.TeleportTo(spawnPointsTeamBlue[indexRespawn].position, orientationA);
break;
case Team.TEAM_RED:
indexRespawn = GetPlayerIndex(Networking.LocalPlayer.playerld);
Quaternion orientationB = Quaternion.LookRotation((centerField.transform.position -
spawnPointsTeamRed[indexRespawn].position).normalized, Vector3.up);
Networking.LocalPlayer.TeleportTo(spawnPointsTeamRed[indexRespawn].position, orientationB);
break;
}

break;




‘= Hierarchy = # Scene ) Gam X Project Settings
+r o el []Center* [PLoca ] -
M VRCDefaultWorldScene* H
= lorld

v

& Re
P TeamRed
f0) RespawnRed
(7 RespawnRed (1)
£ RespawnRed (2)
£ RespawnRed (3)
f0) RespawnRed (4)
Q) TeamBlue
T RespawnBlue
) RespawnBlue (1)
1] RespawnBlue (2)
(7 RespawnBlue (3)
71 RespawnBlue (4)
£g GameHUD
&) BallController




A=

LESSON 04 COMPLETEL

You now have:
« Working team assignment system
« HUD Debug showing team structure
 Floating identification balls over each player
« Balanced team detection

« Start button activation logic




Lo
@ Self-Evaluation

It’s time to put what we’ve learned into practice! Here are 4 questions
to check by yourself what you have learnt in this lesson.




Why are players stored in team arrays (Red and Blue)?

To visually separate To control player To organize players
players in the scene movement speed based logically and apply team-
hierarchy on team based game rules




What is the purpose of assighing an index to each player within a team?

To uniquely identify a
player’s position inside
the team array

To determine the player’s
walking and running
speed

To decide which avatar the
player can use




Why are identification balls attached above players?

Toi hysi To give pl thi
. ° |mp.rove PRYSICS To visually indicate team o'glve P aygrs som.e s
interactions between : to interact with during the
membership to all players

players game




Why should the Start Game button only be enabled when teams are
balanced?

To prevent players from To ensure fair gameplay
joining the world between teams

To reduce network traffic




Help us to improve

Did you understand how players Did you understand how
are assigned to teams? identification balls follow players?
Write your answer here. Write your answer here.

How could this lesson be more intuitive or visual?

Write your answer here.

Which scripting part was the most
challenging (team arrays,
SetOwner, ball positioning)?

Write your answer here.



