
Start

🎓 LESSON 04

Team 

Formation



🎯 Goal Summary:

LESSON GOALS

Next

    • Implement team assignment logic

    • Store players in arrays: Red, Blue

    • Create identi�cation balls (5 Red, 5 Blue)

    • Assign a colored ball above each player

LESSON 04 TEAM FORMATIONLESSON 04 TEAM FORMATION

    • Display team info in HUD Debug

    • Ensure Start Game only works if teams are balanced

    • Teleport the players to their initial match positions

Video Link

https://www.youtube.com/watch?list=TLGG9YMp_mITvsAxMDAxMjAyNg&v=ZmJkXlwl3f4
https://www.youtube.com/watch?v=ZmJkXlwl3f4


Learning Objectives + Deliverables

Learning Objectives

Deliverables

Determine team 
and index of 
each player

Debug team 
assignments 

using GameHUD

Create 
identi�cation ball 
prefabs for each 

team

Enable the Start 
Game bu�on only 
when teams are 

balanced

Create team arrays 
and assign arriving 

players

✅ Balanced Red & 
Blue teams

✅ Team 
assignments visible 

in the HUD

✅ Identi�cation 
balls �oating above 

players

✅ Correct ball 
ownership & 

despawn logic

✅ Start bu�on 
becomes available 

only when teams are 
even



High-Level Description

🎯 Goal: Assign the incoming players to the 2 di�erent teams (RED, 
BLUE) and use a colored ball over their avatar's head to identify them.

GENERAL DESCRIPTION OF THE LESSON

In this lesson we will:

🔹 Two arrays (teamRed[], teamBlue[]) that store player IDs

🔹 Logic in GameController to assign players alternately by order of arrival

🔹 Methods to get a player’s team and team index

🔹 Use GameHUD Debug output to show information about the team 
assignation

🔹 Create ten “identi�cation ball” prefabs (5 red, 5 blue)

Next🧠AI Lesson Prompt: Team Formation

🔹 A TeamAssignation script a�ach to the previous “identi�cation 
ball” that follows the owner player.

🔹 Identi�cation ball assignment is done during ORGANIZATION state

🔹 Create a reset function to clear the ball assignment.

🔹 Bu�on logic that performs the change to GAME state only if 
both teams have the same number of players.

🔴 LEVEL 1: Advanced Challenge

https://chatgpt.com/share/69445096-6d78-8011-9942-697cc3ae593e


Exercise 1: Create 2 Udon networked int arrays in GameController to keep 
the playerId of the players assigned to each team. The assignation is being 
done by order of arrival, so the players that are odd enter to team Red and 
the players who are even enter to team Blue.

🔹 Actions (Part 1/2):

1) De�ne a constant (MaxPlayersPerTeam = 5). De�ne 2 network integer 
arrays for each team (Red, Blue) where we will keep the player’s id, then 
allocate memory and initialize them to -1 at the (Start()) method.

2) With the previously done player counter done in the last lesson, create a function 
(bool AssignPlayerToTeam(VRCPlayerApi player)) which decides where to store the 
playerId of each player who has joined the game. (Blue → Red → Blue → Red →…). It 
should return true(Red), false(Blue). 

4) De�ne this enum type named Team:

5) Create a function (Team GetPlayerTeam(int targetId)) to retrieve the team which 
a int playerId belongs to.

3) Find out the right place to call the method (AssignPlayerToTeam) 



public class GameController : UdonSharpBehaviour
{
   public const int MaxPlayersPerTeam = 5;
 

   [UdonSynced]
   private int[] _teamBluePlayers = null;
   [UdonSynced]
   private int[] _teamRedPlayers = null;
 

   void Start()
   {
      if (_teamBluePlayers �� null) _teamBluePlayers = new int[MaxPlayersPerTeam];
      if (_teamRedPlayers �� null) _teamRedPlayers = new int[MaxPlayersPerTeam];
      ResetPlayerIndexes();
   }
 

   private void ResetPlayerIndexes()
   {
      for (int i = 0; i < MaxPlayersPerTeam; i��)
      {
         _teamBluePlayers[i] = -1;
         _teamRedPlayers[i] = -1;
      }
   }



public Team GetPlayerTeam(int targetId)
{
   if ((_teamBluePlayers �� null) �� (_teamRedPlayers �� null)) return Team.TEAM_NONE;
   for (int i = 0; i < MaxPlayersPerTeam; i��)
   {
      if (_teamBluePlayers[i] �� targetId)
      {
         return Team.TEAM_BLUE;
      }
   }
   return Team.TEAM_RED;
}



public enum Team 
{ 
  TEAM_NONE = 0, 
  TEAM_BLUE = 1, 
  TEAM_RED = 2 
}



private bool AssignPlayerToTeam(VRCPlayerApi player)
{
    int playerId = player.playerId;
    bool assignToRed = (_totalPlayersInGame % 2 �� 0);
    int[] team = assignToRed ? _teamRedPlayers : _teamBluePlayers;
    for (int i = 0; i < MaxPlayersPerTeam; i��)
    {
       if (team[i] �� -1)
       {
          team[i] = playerId;
          return assignToRed;
       }
    }
    return assignToRed;
}}



public override void OnPlayerJoined(VRCPlayerApi player)
{
   Debug.Log("On Player Joined");
   if (Networking.LocalPlayer �� player)
   {
       player.SetWalkSpeed(6f);
       player.SetRunSpeed(16f);
   }
   _currentState = GameState.ORGANIZATION;
   StateChanged();
   if (Networking.IsMaster)
   {
      AssignPlayerToTeam(player);
      _totalPlayersInGame��;
   }
}



Exercise 1: Create 2 Udon networked int arrays in GameController to keep 
the playerId of the players assigned to each team. The assignation is being 
done by order of arrival, so the players that are odd enter to team Red and 
the players who are even enter to team Blue.

🔹 Actions (Part 2/2):

6) Create a function (int GetPlayerIndex(int targetId)) that will get the 
position in the team’s array of an int playerId.

7) Create a method (void ShowDebugInfo()) that will show through the 
gameHUD.SetDebug() the next information:

            ▪ Player Team

            ▪ Player Index

            ▪ The 2 arrays of the team assignation

9) Test multiple VRChat instance to verify the debug information is displayed

8) Show that information every time a new player connects.

Code Checkpoint: Team Assignation

https://www.dropbox.com/scl/fi/2fa8wyrnmk3wfn9ip1d6v/MultiBallRugby_LESSON_04_TeamAssignment_v00_BASE.zip?rlkey=nobyqx4htko1fug2f56xeas0x&st=jbbv1vkd&dl=0


private void ShowDebugInfo()
{
  string teamA = "";
  string teamB = "";
  for (int i = 0; i < MaxPlayersPerTeam; i��)
  {
    teamA += _teamBluePlayers[i] + ",";
    teamB += _teamRedPlayers[i] + ",";
  }
  int indexPlayer = GetPlayerIndex(Networking.LocalPlayer.playerId);
  Team teamPlayer = GetPlayerTeam(Networking.LocalPlayer.playerId);
  string teamName = "BLUE";
  if (teamPlayer �� Team.TEAM_RED)
  {
    teamName = "RED";
  }
  gameHUD.SetDebug("P["+ indexPlayer +"]("+ teamName +")��A-Blue("+ teamA +")��A-Red("+ teamB +")"); 
}



public int GetPlayerIndex(int targetId)
{
    if ((_teamBluePlayers �� null) �� (_teamRedPlayers �� null)) return -1;
    for (int i = 0; i < MaxPlayersPerTeam; i��)
    {
        if (_teamBluePlayers[i] �� targetId)
        {
            return i;
        }
    }
    for (int i = 0; i < MaxPlayersPerTeam; i��)
    {
       if (_teamRedPlayers[i] �� targetId)
       {
          return i;
       }
    }
    return -1;
}



private void StateChanged()
{
   ShowDebugInfo();
 
   �� OTHER CODE���
}

 public override void OnDeserialization()
 {
    �� OTHER CODE���
 

 ShowDebugInfo();
 }

 public override void OnPlayerJoined(���)
 {
   �� OTHER CODE���
 

AssignPlayerToTeam(player);
RequestSerialization();
 

�� OTHER CODE���
 }



Exercise 2: In order to identify to which team the players belong 
to we are going to place a colored ball over their heads (Blue and 
Red). We will handle the ball with the script TeamAssignation.

🔹 Actions (Part 1/3):

1) Create a prefab for the ball Blue & Red. Then create a container in the scene with 5 
balls for each color. Place the balls far away the game �eld so they aren’t visible.

2) Create the Udon script (TeamAssignation) in the folder /Game/Scrips/View with 
the following variable members:

3) Next you need to create the next methods:

     public bool IsTeamRed { get; }: // A ge�er for the private value

    public void AssignOwner(int playerId) // Assignation of ball to a playerId, propagate

     public void ClearOwner() // Clearing the ownership, propagate

    OnDeserialization() // Process RequestSerialitzation() call: Initialize _targetPlayer

    void Update() // If there is a player assigned to the ball update the position, if not 
place it far away

https://www.dropbox.com/scl/fi/wlfvb76ewrf4v11rhddvj/Images.zip?rlkey=f1ncatd3taznymavfzmryozyi&e=1&st=7xoriibk&dl=0


public class TeamAssignation : UdonSharpBehaviour {
 
    private const float scale = 0.5f; 
    private const float offset = 2.5f; �� Offset y over player’s head 
 
    [SerializeField] private bool isTeamRed = false; �� Team Red or Blue
 
    [UdonSynced] public int ownerPlayerId; �� playerId of the owner
 
    private VRCPlayerApi _targetPlayer; �� player owner reference



void Update()
{
   if (ownerPlayerId �� 0)
   {
      transform.position = new Vector3(1000, 1000, 1000);
      return;
   }
   if (_targetPlayer �� null)
      _targetPlayer = VRCPlayerApi.GetPlayerById(ownerPlayerId);
   if (_targetPlayer �� null) return;
   

   Vector3 playerPos = _targetPlayer.GetPosition();
   Vector3 pos = playerPos + new Vector3(0, offset, 0);
   transform.position = pos;
}



public void AssignOwner(int playerId)
{
    ownerPlayerId = playerId;
    _targetPlayer = null;
    RequestSerialization();
}



public bool IsTeamRed 
{ 
  get { return isTeamRed; } 
}



public override void OnDeserialization()
{
   if (ownerPlayerId > 0)
      _targetPlayer = VRCPlayerApi.GetPlayerById(ownerPlayerId);
   else
      _targetPlayer = null;
}



public void ClearOwner()
{
    ownerPlayerId = 0;
    _targetPlayer = null;
    transform.position = new Vector3(1000, 1000, 1000);
    RequestSerialization();
}



Exercise 2: In order to identify to which team the players belong 
to we are going to place a colored ball over their heads (Blue and 
Red). We will handle the ball with the script TeamAssignation.

🔹 Actions (Part 2/3):

5) In (GameController) script, create the variable member and initialize it with the 
team identi�cation balls of the scene:

6) Still in (GameController) create the methods:

     SpawnIdenti�cationBall(VRCPlayerApi player, bool isTeamRed): // This method 
will performed by the master and it will assign a ball of the array to the joined 
player. Find out where to call it.

    DespawnAllIdenti�cationBalls(): // Method that will despawn all the balls

     DespawnIdenti�cationBall(VRCPlayerApi player): // Method that will despawn the 
ball for a particular player.

    OnPlayerLeft(VRCPlayerApi player):  // Despawn the ball for the player who left.

4) Add the script to the 2 prefabs of the previously created balls and initialize the 
right value (bool isTeamBlue) to each prefab





public class GameController: UdonSharpBehaviour {
 
    �� OTHER CODE���
 
    [SerializeField]
    private GameObject[] teamAssignation; �� All the references to the balls



 public override void OnPlayerLeft(VRCPlayerApi player)
 {
    DespawnIdentif�cationBall(player);
 }



private void DespawnAllIdentif�cationBalls()
{
  foreach (GameObject identif�cation in teamAssignation)
  {
     TeamAssignation follower = identif�cation.GetComponent<TeamAssignation>();
     follower.ClearOwner();
  }
}



public void AssignOwner(int playerId)
{
    ownerPlayerId = playerId;
    _targetPlayer = null;
    RequestSerialization();
}



private void DespawnIdentif�cationBall(VRCPlayerApi player)
{
   if (player �� null)
   {
      foreach (GameObject identif�cation in teamAssignation)
      {
        TeamAssignation follower = identif�cation.GetComponent<TeamAssignation>();
        if (follower.ownerPlayerId �� player.playerId)
        {
           follower.ClearOwner();
           break;
        }
      }
    }
}



private void SpawnIdentif�cationBall(VRCPlayerApi player, bool isTeamRed)
{
    foreach (GameObject identif�cation in teamAssignation)
    {
       TeamAssignation follower = identif�cation.GetComponent<TeamAssignation>();
       if ((follower.ownerPlayerId �� 0) �� (follower.IsTeamRed �� isTeamRed))
       {
          follower.AssignOwner(player.playerId);
          break;
       }
    }
}
 
public override void OnPlayerJoined(VRCPlayerApi player)
{
   �� OTHER CODE ���
   if (Networking.IsMaster)
   {
      bool isTeamRed = AssignPlayerToTeam(player);
      SpawnIdentif�cationBall(player, isTeamRed);
      _totalPlayersInGame��;
      if (_totalPlayersInGame �� 4)
      {
         SetState(GameState.GAME);
      }
    }
}



Exercise 2: In order to identify to which team the players belong 
to we are going to place a colored ball over their heads (Blue and 
Red). We will handle the ball with the script TeamAssignation.

🔹 Actions (Part 3/3):

7) Test in the Unity Editor and verify that over your head is the right colored ball

8) Test with multiple instances if the player team assignation is properly done and 
each player has the right colored ball.

Code Checkpoint: Colored Team Balls

https://www.dropbox.com/scl/fi/dqdrfgp94r8gn846ld49i/MultiBallRugby_LESSON_04_TeamAssignment_v01_BALLS.zip?rlkey=a2twvzm40mfliinv7c3cpzi5w&st=8qi85hp1&dl=0


 public override void OnPlayerLeft(VRCPlayerApi player)
 {
    DespawnIdentif�cationBall(player);
 }



private void DespawnIdentif�cationBall(VRCPlayerApi player)
{
   if (player �� null)
   {
      foreach (GameObject identif�cation in teamAssignation)
      {
        TeamAssignation follower = identif�cation.GetComponent<TeamAssignation>();
        if (follower.ownerPlayerId �� player.playerId)
        {
           follower.ClearOwner();
           break;
        }
      }
    }
}



public void AssignOwner(int playerId)
{
    ownerPlayerId = playerId;
    _targetPlayer = null;
    RequestSerialization();
}



private void SpawnIdentif�cationBall(VRCPlayerApi player, bool isTeamRed)
{
    foreach (GameObject identif�cation in teamAssignation)
    {
       TeamAssignation follower = identif�cation.GetComponent<TeamAssignation>();
       if ((follower.ownerPlayerId �� 0) �� (follower.IsTeamRed �� isTeamRed))
       {
          follower.AssignOwner(player.playerId);
          break;
       }
    }
}
 
public override void OnPlayerJoined(VRCPlayerApi player)
{
   �� OTHER CODE ���
   if (Networking.IsMaster)
   {
      bool isTeamRed = AssignPlayerToTeam(player);
      SpawnIdentif�cationBall(player, isTeamRed);
      _totalPlayersInGame��;
      if (_totalPlayersInGame �� 4)
      {
         SetState(GameState.GAME);
      }
    }
}



private void DespawnAllIdentif�cationBalls()
{
  foreach (GameObject identif�cation in teamAssignation)
  {
     TeamAssignation follower = identif�cation.GetComponent<TeamAssignation>();
     follower.ClearOwner();
  }
}



Exercise 3: Implement a logic to start the game when there are the same 
number of players for each team. Create an interactable button with a 
text�eld that displays a text depending if the game is ready or not.

🔹 Actions (Part 1/3):

1) In the scene create a GameObject named Bu�onStartGame that will contain a 
canvas with a text inside.

2) Create the Udon script (Bu�onStartGame) that will contain the logic of the 
bu�on. That will have the next variable members:

3) Add the script to the created GameObject in the scene and initialize its members

    void DisableReady() // Disables the bu�on forbidding the game start

    public void NetworkEnable(bool isReady) // Method that will call 
SendCustomNetworkEvent to enable or disable the bu�on for all the connected 
players.

    public override void Interact() // Inherited method that enables the interaction. 
Override it and just display a Debug.Log(“PRESSED START”) when enabled.

4) In (Bu�onStartGame) implement the following methods:

    void EnableReady() // Enable the bu�on to be able to start the game



               public void DisableReady()
               {
                  _isEnabled = false;
                  textMessage.text = "NEED 1 MORE PLAYER���";
                }



public void NetworkEnable(bool isReady)
{
   if (isReady)
   {
    SendCustomNetworkEvent(VRC.Udon.Common.Interfaces.NetworkEventTarget.All, nameof(EnableReady));
   }
   else
   {
    SendCustomNetworkEvent(VRC.Udon.Common.Interfaces.NetworkEventTarget.All, nameof(DisableReady)); 
   }
}



public override void Interact()
{
    if (gameController �� null)
    {
        if (_isEnabled)
        {
           Debug.Log("PRESSED START");
        }
     }
}



public class ButtonStartGame : UdonSharpBehaviour
{
   [SerializeField]
   private GameController gameController; �� Reference to the GameController
 
   [SerializeField]
   private TextMeshProUGUI textMessage; �� Reference to the textf�eld 
 
   private bool _isEnabled = false; �� Enable/Disable interaction





               public void EnableReady()
               {
                   _isEnabled = true;
                   textMessage.text = "START GAME";
               }



Exercise 3: Implement a logic to start the game when there are the same 
number of players for each team. Create an interactable button with a 
text�eld that displays a text depending if the game is ready or not.

🔹 Actions (Part 2/3):

5) In the script (GameController), de�ne a new member variable and initialize it:

8) Back to (GameController) we are going to remove the code that considered the 
total number of players to change to the state GAME and now we are going to use 
the new system. Remember, the bu�on should show that is ready to start the game 
only when there are the same number of players for each team.

 9) Test it with multiple VRChat instances.

10) In order to be able to run the game in the same Unity editor we are going to 
type this code in (Bu�onStartGame)

7) Back in (Bu�onStartGame) now call the (StartGameRequest) when running (void 
Interact()) method.

6) Still in (GameController) implement the method (public void StartGameRequest()). 
This method will be called by the (Bu�onStartGame) and it will perform a 
(SendCustomNetworkEvent) that will ask the master client to start the game.



public void NetworkEnable(bool isReady)
{
#if UNITY_EDITOR
   SendCustomNetworkEvent(VRC.Udon.Common.Interfaces.NetworkEventTarget.All, nameof(EnableReady));
#else
   if (isReady)
   {
     SendCustomNetworkEvent(VRC.Udon.Common.Interfaces.NetworkEventTarget.All, nameof(EnableReady));
   }
   else
   {
     SendCustomNetworkEvent(VRC.Udon.Common.Interfaces.NetworkEventTarget.All, nameof(DisableReady));
   }
#endif
}



public class GameController : UdonSharpBehaviour
{   
  �� OTHER CODE ���
 

  public void StartGameRequest()
  {
    SendCustomNetworkEvent(VRC.Udon.Common.Interfaces.NetworkEventTarget.All, nameof(RequestMasterStartGame));
  }
 

  public void RequestMasterStartGame()
  {
     if (Networking.IsMaster)
     {
        SetState(GameState.GAME);
     }
  }



public override void OnPlayerJoined(VRCPlayerApi player)
{
   �� OTHER CODE ���
 
   if (Networking.IsMaster)
   {
      bool isTeamRed = AssignPlayerToTeam(player);
      SpawnIdentif�cationBall(player, isTeamRed);
      _totalPlayersInGame��;
      buttonStartGame.NetworkEnable(_totalPlayersInGame % 2 �� 0);
   }
}



          public override void Interact()
          {
               if (gameController �� null)
               {
                   if (_isEnabled)
                   {
                       gameController.StartGameRequest();
                   }
               }
           }



public class GameController : UdonSharpBehaviour
{
   �� OTHER CODE ���
 
   [SerializeField] private ButtonStartGame buttonStartGame;



Exercise 3: Implement a logic to start the game when there are the same 
number of players for each team. Create an interactable button with a 
text�eld that displays a text depending if the game is ready or not.

🔹 Actions (Part 3/3):

10) In the script (GameController), de�ne a new member variable and initialize it:

12) Back to (GameController) script , we are going to hide the bu�on when we enter 
the GAME state.

 13) Now you should be able to change to GAME state in Unity Editor and the 
bu�onStartGame should disappear.

14) Do tests with multiple VRChat Instances

     void HideStart() // Will hide the bu�onStartGame

11) Back in the script (Bu�onStartGame) we are going to implement these methods:

     void ShowStart() // Will make visible the bu�onStartGame

Code Checkpoint: Match Players

https://www.dropbox.com/scl/fi/0geokztttxxrgozr5k1cy/MultiBallRugby_LESSON_04_TeamAssignment_v02_MATCH_PLAYERS.zip?rlkey=xoskvvyn1oj3e5bi51lvma6h1&st=88eoc3jj&dl=0


               public void HideStart()
               {
                   this.gameObject.SetActive(false);
               }



public class GameController : UdonSharpBehaviour
{
   �� OTHER CODE ���
 
   [SerializeField] private ButtonStartGame buttonStartGame;



               public void ShowStart()
               {
                   this.gameObject.SetActive(true);
               }



private void StateChanged()
{
    switch (_currentState)
    {
        �� OTHER CODE ���
        case GameState.GAME�
             gameHUD.SetState("GAME");
             buttonStartGame.HideStart();
             break;
 

     �� OTHER CODE ���



Exercise 4: When the game changes to the state GAME we should reposition 
the players in a prede�ned positions.

🔹 Actions:

1) Create 5 gameObjects for each team in both sides of the �eld where the players 
will respawn. Disable the MeshRenderer component to make them invisible.

2) Create in (GameController) the members:

3) Create an non-visible gameObject in the center of the game �eld because we will need to 
reorient the players towards it when they respawn. 

   5)  When changing the state to GAME we are going to teleport each local player to 
one of the spawning positions.

        ◦ Tip 1: Use (GetPlayerTeam) to get player’s team

        ◦ Tip 2: Use (GetPlayerIndex) to get player’s index in array

        ◦ Tip 3: Only the same local player can teleport himself Networking.LocalPlayer

6) Test in Unity Editor and test with multiple VRChat Windows instances.

4) Still in (GameController), create the member and initialize it with the previous GameObject:

Code Checkpoint: Respawn for match

https://www.dropbox.com/scl/fi/of9ihjs18zr8cicbhkg9i/MultiBallRugby_LESSON_04_TeamAssignment_v03_RESPAWN.zip?rlkey=hg05vsydohijac4zyoungi00i&st=s39mzudc&dl=0


public class GameController : UdonSharpBehaviour
{   
  �� OTHER CODE ���
 

  [SerializeField] private GameObject centerField;



public override void Interact()
{
    if (gameController �� null)
    {
        if (_isEnabled)
        {
           Debug.Log("PRESSED START");
        }
     }
}



public class GameController : UdonSharpBehaviour
{
   �� OTHER CODE ���
 

   [SerializeField]
   private Transform[] spawnPointsTeamRed;
 

   [SerializeField]
   private Transform[] spawnPointsTeamBlue;



private void StateChanged()
{
   switch (_currentState)
   {

�� OTHER CODE ���
 

      case GameState.GAME�
         gameHUD.SetState("GAME");
         buttonStartGame.HideStart();
         

         �� RESPAWN PLAYERS IN POSITIONS
         Team teamPlayer = GetPlayerTeam(Networking.LocalPlayer.playerId);
         int indexRespawn = 0;
         switch (teamPlayer)
         {
           case Team.TEAM_BLUE�
              indexRespawn = GetPlayerIndex(Networking.LocalPlayer.playerId);
                Quaternion orientationA = Quaternion.LookRotation((centerField.transform.position - 
spawnPointsTeamBlue[indexRespawn].position).normalized, Vector3.up);
                Networking.LocalPlayer.TeleportTo(spawnPointsTeamBlue[indexRespawn].position, orientationA);
                break;
           case Team.TEAM_RED�
                indexRespawn = GetPlayerIndex(Networking.LocalPlayer.playerId);
                Quaternion orientationB = Quaternion.LookRotation((centerField.transform.position - 
spawnPointsTeamRed[indexRespawn].position).normalized, Vector3.up);
                 Networking.LocalPlayer.TeleportTo(spawnPointsTeamRed[indexRespawn].position, orientationB);
                 break;
          }
          break;





LESSON 04 COMPLETED

You now have:
 
    • Working team assignment system
 
    • HUD Debug showing team structure
 
    • Floating identi�cation balls over each player
 
    • Balanced team detection
 
    • Start bu�on activation logic



Question 1

It's time to put what we've learned into practice! Here are 4 questions 
to check by yourself what you have learnt in this lesson.

Self-Evaluation

Question 2

Question 3

Question 4



Why are players stored in team arrays (Red and Blue)?

To visually separate
players in the scene

hierarchy

To control player
movement speed based

on team

To organize players
logically and apply team-

based game rules



What is the purpose of assigning an index to each player within a team?

To uniquely identify a
playerʼs position inside

the team array

To decide which avatar the
player can use

To determine the playerʼs
walking and running

speed



Why are identification balls attached above players?

To improve physics
interactions between

players

To visually indicate team
membership to all players

To give players something
to interact with during the

game



Why should the Start Game button only be enabled when teams are
balanced?

To prevent players from
joining the world

To ensure fair gameplay
between teams

To reduce network tra�ic



Help us to improve

Write your answer here.

How could this lesson be more intuitive or visual?

Send

Write your answer here.

Did you understand how players

are assigned to teams?

Send

Write your answer here.

Did you understand how

identi�cation balls follow players?

Send

Write your answer here.

Which scripting part was the most

challenging (team arrays,

SetOwner, ball positioning)?

Send


