
Start

🎓 LESSON 05

Ball Creation



🎯 Goal Summary:

LESSON GOALS

Next

    • Create interactive, networked balls

    • Implement pickup/drop mechanics

    • Add realistic throw physics

    • Sync ball movement through network impulses

LESSON 05 BALL CONTROLLERLESSON 05 BALL CONTROLLER

    • Add respawn/despawn logic

    • Build BallController to manage multiple balls

Video Link

https://www.youtube.com/watch?list=TLGGdqPU9NoS8zsxMDAxMjAyNg&v=N1S3WbvNu_0
https://www.youtube.com/watch?v=N1S3WbvNu_0


Learning Objectives + Deliverables

Learning Objectives

Deliverables

Use 
UdonSynced 

variables 
(ownerPlayerId, 
impulseVector, 

isAlive)

Detect input for 
pickup/throw

Implement 
respawn/despawn 

behavior

Build BallController 
to coordinate ball 
logic across the 

game

Build an 
interactable 

GameBall prefab

✅ A ball that can be 
picked up in VR & 

Desktop

✅ A ball that can 
be thrown with 
correct physics

✅ Movement 
synchronized 
across clients

✅ Respawn logic 
that only Master 

can execute

✅ BallController 
that spawns balls 

at game start



GENERAL DESCRIPTION OF THE LESSON

In this lesson we will:

🔹 Import a soccer ball and a�ach Rigidbody component

🔹 Create a GameBall script controlling:

🔹 Use a UdonSynced variable to apply an impulse when ball is 
released by the player.

🔹 Add respawn logic to the balls to appear close to the center of 
the �eld when the game changes to the state GAME

🔹 Build BallController:

Next

🧠AI Lesson Prompt: Ball Creation

High-Level Description

🎯 Goal: We will spawn a number of balls that is half of the players that are 
in the game when it starts. They will be able to pick and throw the balls.

🔹 In GameController script type this code before starting the 
lesson:

🔴 LEVEL 1: Advanced Challenge

https://chatgpt.com/share/69454b0b-f830-8011-9d0b-d35c7eceabb0


◦ Ownership: Claim the ownership when a player picks up the ball 
 
 ◦ Pickup & Release: Keep pressed the trigger to hold the ball. 
 
 ◦ Throw impulse: Release the trigger to throw the ball. 
 
 ◦ Update local position of the ball while held: Updated by the 
position of the player (VR and Desktop)



◦ Keeps track of all balls 
 
 ◦ Assigns respawn positions 
 
 ◦ Detects who is carrying a ball 
 
 ◦ Spawns correct number of balls for players



       public bool IsVR  {
               get { return _isVR; }
               set { _isVR = value; }
           }
 
           void Start()  {
               _isVR = Networking.LocalPlayer.IsUserInVR();
               …
 
         public bool CheckFireTriggeredDown()  {
             if (_isVR)  {
                 // Primary hand trigger check (le� or right)
                 return Input.GetAxisRaw("Oculus_CrossPlatform_PrimaryIndexTrigger") > 0.75f
                     || Input.GetAxisRaw("Oculus_CrossPlatform_SecondaryIndexTrigger") > 0.75f;
             }
             else  {
                 return Input.GetButtonDown("Fire1");
             }
         }
 
         public bool CheckFireTriggeredUp() {
               if (_isVR)  {
                   // Primary hand trigger check (le� or right)
                   return Input.GetAxisRaw("Oculus_CrossPlatform_PrimaryIndexTrigger") < 0.1f
                       && Input.GetAxisRaw("Oculus_CrossPlatform_SecondaryIndexTrigger") < 0.1f;
               }
               else  {
                   return Input.GetButtonUp("Fire1");
               }
         }



Exercise 1: Create the GameBall object + components.

🔹 Actions:

    1) Import a soccer ball from the Unity asset store

    2) Create an empty container in the scene named “Balls”

    3) Add the soccer ball there and create a new prefab (/Game/Resources/GameBall)

    4) Add a Rigidbody

    5) Set Sphere’s Collider to isTrigger = false

    6) Add UdonBehaviour with empty script (class GameBall)

GameObject Script

https://assetstore.unity.com/packages/3d/low-polygon-soccer-ball-84382






Exercise 2: Implement GameBall behaviour to pick and release 
the ball between all the di�erent players in game.

🔹 Actions in GameBall script (Part 1/2):

1) Create the next member variables:

2) Implement methods:

     void ActivatePhysics(bool isActive) // Will activate/deactivate the physics of the ball

bool IsOwned() // Will check if the ball is already owned by one player

void ClearOwner() // Will set (ownerPlayerId=-1), activate ball physics and 
RequestSerialitzation to update the state in the network.
override void OnDeserialization() // Checks if who is the owner by checking the network variable 
(ownerPlayerId). If there is an owner deactivate physics, if there is no owner activate physics.

override void Interact() // Before grabbing the ball check if it’s already assigned to an existing 
player, if not then proceed to update (ownerPlayerId) and RequestSerialization().

override void OnPlayerLeft(VRCPlayerApi player) // if the ball was owned by the leaving player 
then clear the ownership.

void Update() // Checks if there is an owner for the ball and update the position of the ball 
considering if we are on VR or on desktop. On desktop mode click once to pick, click again 
to release, but in VR keep pressed trigger to grab and release trigger to release. Beware 
that in VR you should use _ignoreTime to avoid picking up again the ball after releasing. 
This method is more di�cult than usual, so feel free to ask AI for help.



public void ClearOwner()
{
    ownerPlayerId = -1;
    _ignoreTime = 0;
    _currentOwner = null;
    ActivatePhysics(true);
    RequestSerialization();
    OnDeserialization();
}



public void ActivatePhysics(bool isActive)
{
    _body.useGravity = isActive;
    _body.isKinematic = !isActive;
}



public override void OnDeserialization()
{
   if (ownerPlayerId �� -1)
   {
      _currentOwner = null;
      ActivatePhysics(true);
   }
   else
   {
     _currentOwner = VRCPlayerApi.GetPlayerById(ownerPlayerId);
     ActivatePhysics(false);
   }
}



public override void OnPlayerLeft(VRCPlayerApi player)
{
  if (player �� _currentOwner)
  {
     ClearOwner();
     RequestSerialization();
  }
}



public override void Interact()
{
  var player = Networking.LocalPlayer;
  if (!IsOwned() �� (_ignoreTime �� 0))
  {
     if (!Networking.IsOwner(gameObject))
            Networking.SetOwner(player, gameObject);
 

     _ignoreTime = 1;
     ownerPlayerId = player.playerId;
     RequestSerialization();
     OnDeserialization();
     return;
   }
}



[RequireComponent(typeof(Rigidbody))]
public class GameBall : UdonSharpBehaviour
{
   [Header("Desktop/Editor Placement (Head View)")] 
   public Vector3 headPositionOffset = new Vector3(0.3f, -0.2f, 0.6f); 
   public Vector3 headRotationOffset = Vector3.zero; 
 
   [Header("VR Placement (Right Hand Grip)")] 
   public Vector3 handPositionOffset = new Vector3(0.08f, -0.05f, 0.15f); 
   public Vector3 handRotationOffset = Vector3.zero; 
 
   [UdonSynced]
   public int ownerPlayerId = -1; �� Id player who owns the ball 
 
   [SerializeField] private GameController gameController; 
 
   private VRCPlayerApi _currentOwner; 
   private Rigidbody _body; 
   private float _ignoreTime = 0;



private void Update() {
  if (_currentOwner �� null) {
   if (_currentOwner �� Networking.LocalPlayer) {
      if (_ignoreTime > 0) {
            _ignoreTime -= Time.deltaTime;
      }
      if (_ignoreTime �� 0) {
         if (gameController.IsVR) {
            if (gameController.CheckFireTriggeredUp()) {
                 ClearOwner();
            }
         }
         else {
           if (gameController.CheckFireTriggeredDown()) {
              ClearOwner();
           }
         }
      }
   }
   if (_currentOwner �� null) {
      if (gameController.IsVR) {
          VRCPlayerApi.TrackingData handData = _currentOwner.GetTrackingData(VRCPlayerApi.TrackingDataType.RightHand);
          transform.position = handData.position + handData.rotation * handPositionOffset;
      }
      else {
          VRCPlayerApi.TrackingData headData = _currentOwner.GetTrackingData(VRCPlayerApi.TrackingDataType.Head);
          transform.position = headData.position + headData.rotation * headPositionOffset;
      }
   }
  }
  else {
     if (_ignoreTime > 0) {
        _ignoreTime -= Time.deltaTime;
     }
  }
}



public bool IsOwned()
{
  return ownerPlayerId �� -1;
}



3) Test in Unity Editor pick up/release

4) Test with multiple VRChat instances that all the players can pick up/release the ball

5) When releasing the ball, instead of doing (ClearOwner()) implement a method 
(ThrowBall()) that will throw the ball with an impulse. Create this network variable 
and the method:

6) You will apply the impulseVector on the (OnDeserialization()) when you are 
releasing the ball.

7) Test it in the Unity Editor

8) Test it with multiple VRChat instances

Exercise 2: Implement GameBall behaviour to pick and and 
release the ball between all the di�erent players in game.

🔹 Actions in GameBall script (Part 2/2):

Code Checkpoint: Single Ball

https://www.dropbox.com/scl/fi/w6b7meb4d1ta1ki6mr3c7/MultiBallRugby_LESSON_05_BALLS_v00_SINGLEBALL.zip?rlkey=ucbx5em6yzgxe51gb2eun3tpq&st=s59tywi5&dl=0


public const float TotalForceBallImpulse = 30;
 

[UdonSynced] public Vector3 impulseVector;
 

public void ThrowBall()
{
    if (gameController.IsVR)
    {
       VRCPlayerApi.TrackingData handData = _currentOwner.GetTrackingData(VRCPlayerApi.TrackingDataType.RightHand);
       impulseVector = (handData.rotation * Quaternion.Euler(new Vector3(0, 55.3f, 0))) * Vector3.forward;
    }
    else
    {
       VRCPlayerApi.TrackingData headData = _currentOwner.GetTrackingData(VRCPlayerApi.TrackingDataType.Head);
       impulseVector = headData.rotation * Vector3.forward;
    }
    impulseVector.Normalize();
    ClearOwner();
    _ignoreTime = 1;
}
               



          public override void OnDeserialization()
           {
               if (ownerPlayerId �� -1)
               {
                   _currentOwner = null;
                   ActivatePhysics(true);
                   if (impulseVector �� Vector3.zero)
                   {
                      if (_body.velocity.magnitude �� 0)
                      {
                         _body.AddForce(impulseVector * TotalForceBallImpulse, ForceMode.Impulse);
                      }
                   }
               }
               else
               {
                   _currentOwner = VRCPlayerApi.GetPlayerById(ownerPlayerId);
                   ActivatePhysics(false);
               }
           }



Exercise 3: The ball should only appear when the game changes 
to the GAME state. We should respawn the ball when the game 
starts at the center of the �eld.

🔹 Actions (Part 1/2):

1) In (GameBall) script, create these variable members:

2) Implement the methods:

     RespawnBall(Vector3 position) // Respawn a ball se�ing it alive

void DespawnBall() // Despawn a ball se�ing it not alive

3) In (GameController) create a member variable and initialize it:

void Start() // Set a ball not alive, deactivate physics and set the position to the 
_resetPosition

4) Still in (GameController), we are going to call (RespawnBall(Vector3 position)) 
method with the position on the center of the �eld when we change to the GAME 
state.

5) Test in the Unity Editor

6) Test it in multiple VRChat instance and observe the ball doesn’t appear to all the 
clients at the transition to GAME state.



public void DespawnBall()
{
    if (isAlive)
    {
       if (Networking.IsOwner(gameObject))
       {
           isAlive = false;
           ownerPlayerId = -1;
           this.transform.position = _resetPosition;
           RequestSerialization();
           OnDeserialization();
        }
    }
}



public void RespawnBall(Vector3 position)
{
    if (Networking.IsMaster)
    {
       if (!Networking.IsOwner(gameObject))
              Networking.SetOwner(Networking.LocalPlayer, gameObject);
 

       isAlive = true;
       ownerPlayerId = -1;
       transform.position = position;
       ActivatePhysics(true);
       RequestSerialization();
       OnDeserialization();
    }
}



    private void StateChanged()
    {
        switch (_currentState)
        {          
 

case GameState.GAME�
             �� OTHER CODE���
                
             gameBall.RespawnBall(centerField.transform.position);
             break;



[UdonSynced] public bool isAlive; �� Reports if the ball is being used 
 
private Vector3 _resetPosition; �� An out of the f�eld position when the ball is not alive



[SerializeField] private GameBall gameBall;



private void Start()
{
    isAlive = false;
    _body = GetComponent<Rigidbody>();
    _resetPosition = new Vector3(1000, 1000, 1000);
    this.transform.position = _resetPosition;
    ActivatePhysics(false);
}



Exercise 3: The ball should only appear when the game changes 
to the GAME state. We should respawn the ball when the game 
starts at the center of the �eld.

🔹 Actions (Part 2/2):

7) Still in (GameBall), to �x the previous we need to do a patch in the system. We are going to 
create variables that will keep the position of the collision of the ball with the �oor:

8) The calculation of this collision (OnCollisionEnter(Collision collision))  should only 
be done once just after the ball has been respawned, create a boolean variable that 
allow you to control that.

9) This initialPosition will be used in the Update() of the GameBall in order to set 
the ball position when there is no owner.

11) If you succeed the ball will appear in the non-master clients at the collision point 
with the �oor.

10) Reset the (initialPosition) to zero when the player (void Interact()) with it.

12) Test it with multiple VRChat instances

Code Checkpoint: Ball Respawn

https://www.dropbox.com/scl/fi/d35y2a2et395u6mgqbjdm/MultiBallRugby_LESSON_05_BALLS_v01_BALLRESPAWN.zip?rlkey=nvl50crih0l62rj973up0i1u2&st=r1ig04hk&dl=0


void Update()
{
    if (isAlive)
    {
        if (_currentOwner �� null)
        {

   �� OTHER CODE ���
        }
        else
        {
            if (_ignoreTime > 0)
            {
                _ignoreTime -= Time.deltaTime;
            }
            if (initialPosition �� Vector3.zero)
            {
                transform.position = initialPosition;
            }
        }
    }
    else
    {
        transform.position = _resetPosition;
    }



public void OnCollisionEnter(Collision collision)
{
   if (_hasBeenRespawned)
   {
      if (collision.gameObject �� gameController.F�oor)
      {
         _hasBeenRespawned = false;
         initialPosition = this.transform.position;
         RequestSerialization();
       }
    }
}



public override void Interact()
{
    var player = Networking.LocalPlayer;
    if (!IsOwned() �� (_ignoreTime �� 0))
    {
        if (!Networking.IsOwner(gameObject))
            Networking.SetOwner(player, gameObject);
        _ignoreTime = 1;
        ownerPlayerId = player.playerId;
        initialPosition = Vector3.zero;
        RequestSerialization();
        OnDeserialization();
        return;
    }
}



[UdonSynced] public Vector3 initialPosition; �� First floor collision
 
private bool _hasBeenRespawned; �� Set to true when the ball has been respawned
 
 
void Start()
{
   isAlive = false;
   _body = GetComponent<Rigidbody>();
   _resetPosition = new Vector3(1000, 1000, 1000);
   this.transform.position = _resetPosition;
   ActivatePhysics(false);
   _hasBeenRespawned = true;  �� Initialize to true
}



Exercise 4: Since we are going to work with multiple balls (up to 
5) we need to create a Udon Script BallController that will handle 
the balls respawning and despawning.

🔹 Actions (Part 1/2):

1) Create the script (BallController) in /Game/Scripts/Controller folder.

2) Create an empty GameObject in the scene, name it BallController and add the script.

3) We are going to de�ne these members:

4) We are going to create 5 balls in the scene and we are going to create a 
collection of invisible gameObjects that will de�ne the respawn position that the 
ball can appear. Initialize the previous variable member with all these GameObjects.

5) We are going to implement these functions:

      int GetTotalFreeBalls() // Total balls free (meaning !isAlive)

GameBall GetNextFreeBall() // Next free ball (meaning one with !isAlive)

bool LocalPlayerCarryingABall() // If the local player owns a ball

Vector3 GetRandomRespawnPosition() // Get a random respawn position

void RespawnBall() // Respawn the next free ball

GameBall GetBallOwnedByLocalPlayer() // Get the ball owned by local player



[SerializeField] private GameController gameController; 
 
[SerializeField] private GameBall[] balls; �� References to the GameBalls 
 
[SerializeField] private Transform[] spawnPoints; �� Ball respawn points



               public int GetTotalFreeBalls()
               {
                   int counter = 0;
                   foreach (GameBall ball in balls)
                   {
                       if (!ball.isAlive)
                       {
                           counter��;
                       }
                   }
                   return counter;
               }



public void RespawnBall()
{
    if (!Networking.IsMaster) return;
    if (GetTotalFreeBalls() �� 0) return;
    GameBall ball = GetNextFreeBall();
                  

    ball.RespawnBall(GetRandomRespawnPosition());
    ball.ClearOwner();
    RequestSerialization();
}



public GameBall GetBallOwnedByLocalPlayer()
{
    int idLocalPlayer = Networking.LocalPlayer.playerId;
    foreach (GameBall ball in balls)
    {
      if (ball.ownerPlayerId �� idLocalPlayer)
      {
         return ball;
      }
    }
    return null;
}



               public GameBall GetNextFreeBall()
               {
                   foreach (GameBall ball in balls)
                   {
                       if (!ball.isAlive)
                       {
                           return ball;
                       }
                   }
                   return null;
               }





public bool LocalPlayerCarryingABall()
{
   int idLocalPlayer = Networking.LocalPlayer.playerId;
   foreach (GameBall ball in balls)
   {
      if (ball.isAlive �� ball.ownerPlayerId �� idLocalPlayer)
      {
           return true;
      }
    }
    return false;
}



private Vector3 GetRandomRespawnPosition()
{
   int index = Random.Range(0, spawnPoints.Length);
   return spawnPoints[index].position;
}



Exercise 4: Since we are going to work with multiple balls (up to 
5) we need to create a Udon Script BallController that will handle 
the balls respawning and despawning.

🔹 Actions (Part 2/2):

6) Back in (GameController), remove the reference in the (private GameBall gameBall) it was a 
temporal solution to test the respawning functionality. Now we are going to have a 
reference (private BallController ballController)

8) Test it in the Unity Editor. Di�erent executions should spawn the ball in di�erent 
positions.

7) Still in (GameController) when changing to the GAME state, we are going to 
respawn a number of balls that is half the total number of players.

9) Test with multiple VRChat instances.

Code Checkpoint: Ball Controller

https://www.dropbox.com/scl/fi/p7dze3uoccd33j0j8heut/MultiBallRugby_LESSON_05_BALLS_v02_BALLCONTROLLER.zip?rlkey=u06y9vsxhcejxhymdht28ud3c&st=e1pbsl83&dl=0


private void StateChanged()
{
        switch (_currentState)
        {
            case GameState.GAME�

�� OTHER CODE ���
 

#if UNITY_EDITOR �� TEST_SINGLEPLAYER_VR
    _totalPlayersInGame = 2;
#endif

 
int playersForTeam = (int)(_totalPlayersInGame / 2);
for (int i = 0; i < playersForTeam; i��)
{
    ballController.RespawnBall();
}
break;



LESSON 05 COMPLETED

You now have:
 
    • Interactive, throwable balls
 
    • VR/Desktop input support
 
    • Real physics behavior
 
    • Network-synchronized impulses
 
    • Respawn logic
 
    • A full multi-ball manager



Question 1

It's time to put what we've learned into practice! Here are 4 questions 
to check by yourself what you have learnt in this lesson.

Self-Evaluation

Question 2

Question 3

Question 4



Why does the ball need an “owner” when a player picks it up?

To ensure that only one
player controls the ballʼs

position and actions

To improve physics
performance

To change the color of the
ball based on the player



Why is physics disabled (set to kinematic) while a player is holding the
ball?

To reduce network
synchronization

To prevent the ball from
being visible

To prevent physics forces
from interfering while the

ball follows the player



How is the throwing action synchronized across all players?

By syncing the throw
impulse so all clients

apply the same physics
force

By making every player
calculate the throw locally

By continuously syncing
the ballʼs position every

frame



Why is ball respawn logic usually restricted to the Master player?

To avoid multiple players
respawning the same ball

at the same time

Because non-Master
players cannot use physics

Because only the Master
can see the ball



Help us to improve

Write your answer here.

What example or visual aid would help you understand ball physics better?

Send

Write your answer here.

Did you understand how

ownership transfer works in

VRChat?

Send

Write your answer here.

Was the throwing logic (forward

vector, physics) clear?

Send

Write your answer here.

Which part was hardest: Pickup,

Throw, Physics, or Networking?

Send


