@ LESSON 07
Player's
collision

LESSON GOALS

@ Goal Summary:

« Detect proximity collisions between players
« Only the local player checks for collisions

- Trigger a forced backwards throw on tackle

« Ensure network consistency

‘ Video Link *

https://www.youtube.com/watch?list=TLGGUYsSLtgLi5MxMDAxMjAyNg&v=Rn2bvPDVApk
https://www.youtube.com/watch?v=Rn2bvPDVApk

A

Learning Objectives

Iterate through
players to detect

collisions

Deliverables

\l/

v Collision

detection system

Use

VRCPlayerApi.Ge
tPosition() for
distance checks

[
N

v Forced
backwards throw

Ensure collision
logic only runs
locally

v’ Local-only
processing (no

network conflicts)

Learning Objectives + Deliverables

Ll
[coo)

Track opponents
using team arrays

v/ Smooth
multiplayer
behavior

/.

Trigger forced ball
drop on impact

A

GENERAL DESCRIPTION OF THE LESSON

High-Level Description

@& Goal: In order to quit the ball from a player, the other

player only should touch him and the ball will be
automatically thrown backwards.

(D LEVEL 1: Advanced Challenge

In this lesson we will:

¢ Extend ThrowBall() to support backward throws

¢ Add collision logic inside GameController = CheckPlayersCollision()
¢ Run collision check only during GAME state

¢ Use team arrays to test only enemy players

JAl Lesson Prompt: Player Collision

https://chatgpt.com/share/694597bc-21ac-8011-8371-590516bff10c

A=

Exercise 1: We are % ing to detect in each individual client the
£ distance with the other players. When the distance is close
enough we will consider thot there is a collision and the same

local player with throw his ball backwards. ‘

¢ Actions ‘
1) Before starting we are going to do this in (GameController) to verify that we got the
right number of players in all the connected clients when we start the game:

2) We are going to extend the functionality of (GameBall::ThrowBall(bool direction))
so the the ball is throw backwards by the same player when there is collision with
another player of the opposite team.

3) Still in the script (GameController) we are going to define these 2 member variables that
will be initilitzed in when entering the GAME state that will keep references to the
VRCPlayerApi to all the players in the game:

4) Initialize the previous arrays with the references of VRCPlayerApi of the players a

5) Continuing in the script (GameController), we are going to implement the method
(CheckPlayersCollision()) that will check the collision by distance of the players.
When the collision that we are looking for happens for the local player, the same
player will throw backwards the ball (ThrowBall(false))

6) You won’t be able to test this behavior in the Unity editor. Run multiple VRChat
instances to test it.

public class GameController : UdonSharpBehaviour

{
// OTHER CODE

private void CheckPlayersCollision()
{
for (int i = 0; i < _playersForTeam; i++)
{
VRCPlayerApi A = _playersTeamBlueInGame[il];
if (A = null) continue;
for (int j = @; j < _playersForTeam; j++)

VRCPlayerApi B = _playersTeamRedInGamel[j];

if (B = null) continue;

if (Vector3.Distance(A.GetPosition(), B.GetPosition()) < CollideDistance)
{

if ((A = Networking.LocalPlayer) || (B = Networking.lLocalPlayer))
{

GameBall playerBall = ballController.GetBallOwnedByLocalPlayer();
if (playerBall = null)
{

playerBall.ThrowBall(false);

public class GameBall : UdonSharpBehaviour

{
// OTHER CODE

public void ThrowBall(bool direction)

{
if (gameController.IsVR)

VRCPlayerApi.TrackingData handData = _currentOwner.GetTrackingData(VRCPlayerApi.TrackingDataType.RightHand);
impulseVector = (handData.rotation * Quaternion.Euler(new Vector3(®, 55.3f, 0))) * Vector3.forward;

}

else

{
VRCPlayerApi.TrackingData headData = _currentOwner.GetTrackingData(VRCPlayerApi.TrackingDataType.Head);

impulseVector = headData.rotation * Vector3.forward;

impulseVector = (direction ? 1 : -1) * impulseVector;
if (!direction) impulseVector.y = 0.5f;
impulseVector.Normalize();

ClearOwner();

_ignoreTime = 1;

}

public class GameController : UdonSharpBehaviour

{
// OTHER CODE

private void StateChanged()

{
// OTHER CODE

case GameState.GAME:
// OTHER CODE
// GET ALL THE VRCPlayerApi OF THE PLAYERS IN THE GAME
_playersTeamBlueInGame = new VRCPlayerApi[_playersForTeam];
int indexPlayersInGame = 0;
for (int 1 = 0; i < MaxPlayersPerTeam; i++)
{
%f (_teamBluePlayers[i] > 0)

_playersTeamBlueInGame[indexPlayersInGame] = VRCPlayerApi.GetPlayerById(_teamBluePlayers[i]);
indexPlayersInGame++;

}
}
_playersTeamRedInGame = new VRCPlayerApi[_playersForTeam];
indexPlayersInGame = 0;
for (int 1 = 0; i < MaxPlayersPerTeam; i++)
{
%f (_teamRedPlayers[i] > 0)

_playersTeamRedInGame[indexPlayersInGame] = VRCPlayerApi.GetPlayerById(_teamRedPlayers[i]);
indexPlayersInGame++;

}
}

public void SetState(GameState newState)
{

if (Networking.IsMaster)

{
syncedState = (int)newState;

_currentState = (GameState)syncedState;
RequestSerialization();
StateChanged();

public class GameController : UdonSharpBehaviour

{
public int GetTotalNumberPlayers()

{

int total = 0;
if ((_teamBluePlayers = null) || (_teamRedPlayers = null)) return 0;

for (int i = @; 1 < MaxPlayersPerTeam; i++)

{
}

for (int i = @; 1 < MaxPlayersPerTeam; i++)

{
}

return total;

if (_teamBluePlayers[i] > 0) total++;

if (_teamRedPlayers[i] > 0) total++;

}

private void StateChanged()
{
// OTHER CODE
case GameState.GAME:
// OTHER CODE ...
_totalPlayersInGame = GetTotalNumberPlayers();

public class GameController : UdonSharpBehaviour

{
// OTHER CODE

private VRCPlayerApi[] _playersTeamBlueInGame;

private VRCPlayerApi[] _playersTeamRedInGame;

A=

LESSON O/ COMPLETEL

You now have:
« A complete defensive tackle mechanic
 Local-only collision computation
« Smooth, network-safe physics results

« Backwards throw on contact

a Code Checkpoint: Player Collision

https://www.dropbox.com/scl/fi/k8gjif5f9wc17jnns0f18/MultiBallRugby_LESSON_07_COLLISIONPLAYERS_v00.zip?rlkey=310xmg09rxjp7wn7fktckhmn1&st=61ev7ng1&dl=0

Lo
@ Self-Evaluation

It’s time to put what we’ve learned into practice! Here are 4 questions
to check by yourself what you have learnt in this lesson.

Why is player-to-player collision detection performed only by the local
player?

To prevent multiple
Because only the local To reduce the visual players from triggering the
player has a collider complexity of the game same collision logic
simultaneously

What condition must be true for a tackle (forced ball drop) to occur?

The local player must be
carrying the ball and
collide with an opponent

Two players must be on The ball must be moving
the same team at high speed

Why does the tackle force the ball to be thrown backward instead of
dropped straight down?

T : To create clear gameplay
To simplify the physics foedback and a fair To ensure the ball

calculations . respawns faster
defensive outcome

What is the purpose of adding a cooldown to the collision detection
system?

To avoid repeated
collision triggers in a very
short time

To prevent players from To improve rendering
moving too fast performance

Help us to improve

Was the proximity collision logic Did you understand how to trigger What part of the tackle system
intuitive? forced ball dropping? caused difficulty?
Write your answer here. Write your answer here. Write your answer here.

o o

How could collision detection be taught more clearly or interactively?

Write your answer here.

