
Start

🎓 LESSON 08

End Game

🎯 Goal Summary:

LESSON GOALS

Next

 • Implement synchronized game timer

 • End the game when time runs out

 • Display �nal score screen

 • Transition to RELOAD state

LESSON 08 END GAMELESSON 08 END GAME

 • Reset players, balls, teams, HUD

 • Return to ORGANIZATION for a new match

Video Link

https://www.youtube.com/watch?list=TLGGXon9aOwdJSUxMDAxMjAyNg&v=R_BL-r8ZVU4
https://www.youtube.com/watch?v=R_BL-r8ZVU4

Learning Objectives + Deliverables

Learning Objectives

Deliverables

Stop gameplay
at time

expiration

Calculate WIN /
LOSE / DRAW

based on teams

Display �nal score
UI

Reset state to
ORGANIZATION

Create and
synchronize a

countdown timer

✅ Timer visible in
HUD

✅ GAME_OVER
transition at time

end

✅ Display �nal
score panel

✅ Game State
cleanup

✅ Full return to
ORGANIZATION state

GENERAL DESCRIPTION OF THE LESSON

In this lesson we will:

🔹 Timer counts during GAME state

🔹 When timer reaches zero → GAME_OVER

🔹 HUD shows WIN / LOSE / DRAW

🔹 Despawn balls & indicators

🔹 Teleport players into center of the area

Next🧠AI Lesson Prompt: End Game

High-Level Description

🎯 Goal: The game will end after a period of time. We should report to all the players when the
game is over, show the �nal score and automatically reset the environment to start a new game.

🔹 Reset all values:

 ◦ Scores

 ◦ Team indexes

 ◦ HUD

 ◦ Ball states

🔹 Transition back to ORGANIZATION

🔴 LEVEL 1: Advanced Challenge

https://chatgpt.com/share/6946bcf1-2420-8011-b856-0aa2f7b65f1f

Exercise 1: The game will end after a de�ned period of time (5
minutes). Then a screen in the GameHUD will be displayed reporting
the �nal result and informing if the team has won or lost.

🔹 Actions:

1) In (GameController) we will implement these variables members and a constant:

2) Still in (GameController) implement function (int GetRemainingTime())

3) In (void Update()) method, for the state GAME, implement the logic of time:
 ◦ All the clients udpate (timeGameProgress) and the display in GameHUD
 ◦ Only the Master can update (timeProgressNetwork)
 ◦ Only the Master can run the transition of the state to GAME_OVER

4) In the script (GameHUD) implement create a new text�eld in the gameObject to
display the time and a public function (void SetTime(int seconds)) to set the value.

5) Back in the (GameController) script, use (GameHUD::SetTime) to update the time
of the game

6) Test in the Unity Editor with a reduced amout of total time (10 seconds)

7) Repeat the test with multiple VRChat instances to verify that all clients are
synchronized and the transition to state GAME_OVER is performed.

Code Checkpoint: End Game Basic

https://www.dropbox.com/scl/fi/bz8xiqvu5iwqsh061wf4j/MultiBallRugby_LESSON_08_ENDGAME_v00_BASIC.zip?rlkey=q9olx0u6zgi1q43k1ev1xlgsm&st=lederqih&dl=0

public class GameHUD : UdonSharpBehaviour
{

 [SerializeField]
 private TMP_Text time;

 public void SetTime(int seconds) {
 time.text = GetFormattedTimeMinutes(seconds);
 }

 private string GetFormattedTimeMinutes(int time) {
 int minutes = (int)time / 60;
 int seconds = (int)time % 60;

 �� SECONDS
 string secondsBuf;
 if (seconds < 10) {
 secondsBuf = "0" + seconds;
 }
 else {
 secondsBuf = "" + seconds;
 }
 �� MINUTES
 string minutesBuf;
 if (minutes < 10) {
 minutesBuf = "0" + minutes;
 }
 else {
 minutesBuf = "" + minutes;
 }
 return (minutesBuf + ":" + secondsBuf);
 }

public class GameController : UdonSharpBehaviour
{
 private const int TotalGameTime = 300; �� Total time of the game

 [UdonSynced] private float _timeProgressNetwork = 0; �� Network time for sync purposes

 private float _timeGameProgress = 0; �� Current time progressed

 �� OTHER CODE ���

public class GameController : UdonSharpBehaviour
{
 void Update()
 {
 switch (_currentState)
 {
 case GameState.GAME�
 _timeGameProgress += Time.deltaTime;
 if (Networking.IsMaster)
 {
 _timeProgressNetwork = _timeGameProgress;
 }
 if (_timeGameProgress > TotalGameTime)
 {
 if (Networking.IsMaster)
 {
 SetState(GameState.GAME_OVER);
 }
 }
 else
 {
 CheckPlayersCollision();
 }
 break;

 �� OTHER CODE ���

public int GetRemainingTime()
{
 return (int)(TotalGameTime - _timeGameProgress);
}

public class GameController : UdonSharpBehaviour
{
 void Update()
 {
 switch (_currentState)
 {
 case GameState.GAME�
 _timeGameProgress += Time.deltaTime;
 gameHUD.SetTime(GetRemainingTime());
 if (Networking.IsMaster)
 {
 _timeProgressNetwork = _timeGameProgress;
 }
 if (_timeGameProgress > TotalGameTime)
 {
 if (Networking.IsMaster)
 {
 SetState(GameState.GAME_OVER);
 }
 }
 else
 {
 CheckPlayersCollision();
 }
 break;

 �� OTHER CODE ���

Exercise 2: Create in the GameHUD a new panel that will inform the
player the game is over, if he has won or lost and the �nal score.

🔹 Actions:

1) In (GameHUD) create these variables members and the respective GameObjects in
the GameHUD in scene:

2) Still in (GameHUD) create the public method (void ShowGameOver(GameResult
result, int scoreRed, int scoreBlue)) that will hide the panelGame and show the
panelFinalScore with the �nal result. Use the enum:

3) In (GameController) when changing to GAME_OVER state, calculate the game’s
result (VICTORY, DEFEAT, DRAW) of the local player and call
(GameHUD::ShowGameOver) to show the �nal score

4) Use the change to state RELOAD to make disappear the panel with the �nal score
after 5 seconds

5) In the RELOAD state, you will have to (DespawnBalls) all the balls,
(DespawnAllIdenti�cationBalls) and (ResetPlayerIndexes) for the next team formation.

6) You can test in the Unity editor the VICTORY and DRAW results

7) Test it with multiple VRChat instances to verify the system is working.

Code Checkpoint: End Game Final Score

https://www.dropbox.com/scl/fi/5ftzh0txsue053mo7u19c/MultiBallRugby_LESSON_08_ENDGAME_v01_FINALSCORE.zip?rlkey=prtm4ns99v1xl5ldh8bdqihoz&st=jgmiiw66&dl=0

public class GameHUD : UdonSharpBehaviour
{
 �� OTHER CODE ���

 public void ShowGameOver(GameResult result, int scoreRed, int scoreBlue)
 {
 panelGame.SetActive(false);
 panelFinalScore.SetActive(true);
 f�nalScoreTeamRed.text = scoreRed.ToString();
 f�nalScoreTeamBlue.text = scoreBlue.ToString();
 switch (result)
 {
 case GameResult.VICTORY�
 f�nalTextInformation.text = "VICTORY!!!";
 break;
 case GameResult.DEFEAT�
 f�nalTextInformation.text = "DEFEAT";
 break;
 case GameResult.DRAW�
 f�nalTextInformation.text = "DRAW";
 break;
 }
 }

public class GameHUD : UdonSharpBehaviour
{

 [SerializeField]
 private GameObject panelGame; �� Container of the main components

 [SerializeField]
 private GameObject panelFinalScore; �� Container of f�nal score elements

 [SerializeField]
 private TMP_Text f�nalTextInformation; �� "WIN", "LOSE", or "DRAW"

 [SerializeField]
 private TMP_Text f�nalScoreTeamRed; �� The f�nal score for red team

 [SerializeField]
 private TMP_Text f�nalScoreTeamBlue; �� The f�nal score for blue team

public class GameController : UdonSharpBehaviour
{
 �� OTHER CODE ���

 private void StateChanged()

 case GameState.GAME_OVER�
 gameHUD.SetState("GAME_OVER");
 Team playerTeam = GetPlayerTeam(Networking.LocalPlayer.playerId);
 GameResult gameResult = GameResult.DEFEAT;
 if ((playerTeam �� Team.TEAM_RED) �� (scoreController.GetScoreTeamRed() > scoreController.GetScoreTeamBlue()))
 {
 gameResult = GameResult.VICTORY;
 }
 if ((playerTeam �� Team.TEAM_BLUE) �� (scoreController.GetScoreTeamBlue() > scoreController.GetScoreTeamRed()))
 {
 gameResult = GameResult.VICTORY;
 }
 if (scoreController.GetScoreTeamBlue() �� scoreController.GetScoreTeamRed())
 {
 gameResult = GameResult.DRAW;
 }
 gameHUD.ShowGameOver(gameResult, scoreController.GetScoreTeamRed(), scoreController.GetScoreTeamBlue());
 break;

public class GameController : UdonSharpBehaviour
 ���
 void StateChanged()
 _timeGameProgress = 0�
 ���
 case GameState.RELOAD�
 gameHUD.ShowGameHUD(); �� Restore GameHUD visibility
 ���

 void Update() {
 ���
 case GameState.GAME_OVER�
 _timeGameProgress += Time.deltaTime;
 if (_timeGameProgress > 5) �� Transition to reload state
 {
 if (Networking.IsMaster) {
 SetState(GameState.RELOAD);
 }
 }
 break;

public class GameHUD : UdonSharpBehaviour
 …
 public void ShowGameHUD()
 {
 panelGame.SetActive(true);
 panelFinalScore.SetActive(false);
 }

public enum GameResult
{
 VICTORY = 0,
 DEFEAT = 1,
 DRAW = 2
}

public class GameController : UdonSharpBehaviour
 ���
 void StateChanged()
 ���
 case GameState.RELOAD�
 gameHUD.ShowGameHUD();
 ballController.DespawnBalls();
 DespawnAllIdentif�cationBalls();
 ResetPlayerIndexes();
 ���

public class BallController : UdonSharpBehaviour
{ ���
 public void DespawnBalls()
 {
 foreach (GameBall ball in balls)
 {
 ball.DespawnBall();
 }
 }
 ���

Exercise 3: We are going to reload the game and organize a new game.
The players will respawn close to the center of the game �eld facing the
center with the button to start the game ready for them to press.

🔹 Actions:

1) In (GameController), program the transition after 1 second from RELOAD state to
the ORGANIZATION state.

2) Create a invisible respawn gameObject that you will use to teleport all the players
when we change to the RELOAD state. In the (GameController) script, create the
variable member and initialize it:

3) When changing to the RELOAD state you should teleport the players to the
previously created respawn position and face them towards the center of the �eld
and reset all the state (number of players, ScoreController, GameHUD).

4) Still in the RELOAD state, the last action we will perform is to call a function named
(ReAssignExistingPlayers) that will retrieve all the existing players and will perform
(AssignNewPlayer) for each one of them. This operation requires of some refactoring
in the process of (OnPlayerJoined(VRCPlayerApi player)), so feel free to ask the AI.

5) Test in the Unity editor. You should be able to restart the game.

6) Test with multiple VRChat instances (2 and 4)

Code Checkpoint: End Game Reload

https://www.dropbox.com/scl/fi/o4cga0emmmot5ptlaavdl/MultiBallRugby_LESSON_08_ENDGAME_v02_RELOAD.zip?rlkey=tgh7hnpkuz6gcopxv5zzdf5le&st=46ibmt1c&dl=0

public class GameController : UdonSharpBehaviour
{
 [SerializeField]
 private Transform respawnInField;

public class GameController : UdonSharpBehaviour
{
 void Update() {
 ���
 case GameState.RELOAD�
 _timeGameProgress += Time.deltaTime;
 if (_timeGameProgress > 1)
 {
 if (Networking.IsMaster)
 {
 SetState(GameState.ORGANIZATION);
 }
 }
 break;

public void SetState(GameState newState)
{
 if (Networking.IsMaster)
 {
 syncedState = (int)newState;
 _currentState = (GameState)syncedState;
 RequestSerialization();
 StateChanged();
 }
}

public class GameController : UdonSharpBehaviour
{
 public override void OnPlayerJoined(VRCPlayerApi player) {
 if (player �� Networking.LocalPlayer) {
 _currentState = GameState.ORGANIZATION;
 StateChanged();
 }
 if (Networking.IsMaster) {
 if (_currentState �� GameState.ORGANIZATION) {
 AssignNewPlayer(player, true);
 }
 }
 }
 private void AssignNewPlayer(VRCPlayerApi player, bool updateButtonState) {
 if (_totalPlayersInGame < MaxPlayersPerTeam * 2) {
 bool isInTeamBlue = AssignPlayerToTeam(player);
 _totalPlayersInGame��;
 SpawnIdentif�cationBall(player, isInTeamBlue);
 if (updateButtonState) {
 RequestSerialization();
 buttonStartGame.NetworkEnable(_totalPlayersInGame % 2 �� 0);
 }
 }
 }
 private void ReAssignExistingPlayers() {
 if (Networking.IsMaster) {
 _totalPlayersInGame = 0;
 VRCPlayerApi[] playersToReAssign = new VRCPlayerApi[100];
 VRCPlayerApi.GetPlayers(playersToReAssign);
 int count = VRCPlayerApi.GetPlayerCount();
 for (int i = 0; i < count; i��) {
 AssignNewPlayer(playersToReAssign[i], false);
 }
 RequestSerialization();
 buttonStartGame.NetworkEnable(_totalPlayersInGame % 2 �� 0);
 }
 }
 private void StateChanged() { ���

 switch (_currentState) {
 case GameState.ORGANIZATION�
 gameHUD.SetState("ORGANIZATION");
 gameHUD.ShowGameHUD();
 buttonStartGame.ShowStart();
 break;

public class GameBall: UdonSharpBehaviour
{
 public void DespawnBall()
 {
 if (isAlive)
 {
 if (Networking.IsOwner(gameObject))
 {
 isAlive = false;
 ownerPlayerId = -1;
 this.transform.position = _resetPosition;
 _hasBeenRespawned = true;
 impulseVector = Vector3.zero;
 ActivatePhysics(false);
 RequestSerialization();
 OnDeserialization();
 }
 }
 }
 private void Update()
 {
 if (!isAlive)
 {
 transform.position = _resetPosition;
 }
 else
 if (_currentOwner �� null)
 {
 ���

public class GameController : UdonSharpBehaviour
{
 void StateChanged() {
 ���
 case GameState.RELOAD�
 Quaternion orientationCenter =

Quaternion.LookRotation((centerField.transform.position - respawnInField.position).normalized, Vector3.up);

 Networking.LocalPlayer.TeleportTo(respawnInField.position, orientationCenter);
 _playersForTeam = 0;

 _totalPlayersInGame = 0;
 scoreController.ResetScore(); �� Implement public method
 gameHUD.ResetHUD(); �� Implement public method

 ReAssignExistingPlayers(); �� Implemented in the next refactoring
 break;

public class ScoreController : UdonSharpBehaviour
{
 ���
 public void ResetScore()
 {
 scoreTeamBlue = 0;
 scoreTeamRed = 0;
 }

public class GameHUD : UdonSharpBehaviour
{
 ���
 public void ResetHUD()
 {
 ShowGameHUD();
 scoreBlue.text = "0";
 scoreRed.text = "0";
 }

LESSON 08 COMPLETED

You now have:

 • A synchronized game timer

 • Automatic GAME_OVER transition

 • Final score UI

 • Clean reset logic

 • Full replayable loop

Question 1

It's time to put what we've learned into practice! Here are 4 questions
to check by yourself what you have learnt in this lesson.

Self-Evaluation

Question 2

Question 3

Question 4

Why is the game timer updated and controlled by the Master player?

To ensure a single
authoritative time source

for all players

Because non-Master
players cannot use

Time.deltaTime

Because only the Master
can see the HUD timer

What is the main purpose of the GAME_OVER state?

To disconnect all players
from the world

To stop gameplay and
display the final results of

the match

To immediately restart the
match without showing

results

Why are balls and team indicators despawned during the GAME_OVER /
RELOAD phase?

To prevent players from
seeing the final score

To reset the game to a
clean and neutral state
before the next match

To improve lighting
performance

Why does the game return to the ORGANIZATION state a�er RELOAD?

To allow players to leave
the world

To increase game duration
To prepare players for the

next match with fresh
teams and setup

Help us to improve

Write your answer here.

What could make the end-game �ow easier to understand or visualize?

Send

Write your answer here.

Did you understand how the game

timer works and why it must be

master-controlled?

Send

Write your answer here.

Was the GAME_OVER → RELOAD →

ORGANIZATION �ow clear?

Send

Write your answer here.

Did you struggle with HUD

transitions or state changes?

Send

